52
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Characterization of Natural Cellulose Fibers from the Barks of Ziziphus nummularia as a Reinforcement for Lightweight Composite Applications

, &
Pages 15663-15679 | Published online: 12 Oct 2022

References

  • Amutha, V., and B. Senthilkumar. 2021. Physical, chemical, thermal, and surface morphological properties of the bark fiber extracted from acacia concinna plant. Journal of Natural Fibers 18 (11):1661–74. doi:10.1080/15440478.2019.1697986.
  • Arthanarieswaran, V.P., A. Kumaravel and S.S.Saravanakumar. 2015. Characterization of new natural cellulosic fiber from acacia leucophloea bark. International Journal of Polymer Analysis and Characterization 20 (4):367–76. doi:10.1080/1023666X.2015.1018737.
  • ASTM D3822-07. 2007. Standard test method for tensile properties of single textile fibers. ASTM, 1–3.
  • ASTM E1755-01-R20. 2020. Standard test method for ash in biomass. ASTM, 1–10.
  • Baskaran, P. G., M. Kathiresan, and P. Pandiarajan. 2022. Effect of alkali-treatment on structural, thermal, tensile properties of dichrostachys cinerea bark fiber and its composites. Journal of Natural Fibers 19 (2):433–49. doi:10.1080/15440478.2020.1745123.
  • Belouadah, Z., A. Ati, and M. Rokbi. 2015. Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohydrate Polymers 134:429–37. doi:10.1016/j.carbpol.2015.08.024.
  • Binoj, J. S., R. Edwin Raj, and B. S. S. Daniel. 2017. Comprehensive characterization of industrially discarded fruit fiber, Tamarindus indica L. as a potential eco-friendly bio-reinforcement for polymer composite. Journal of Cleaner Production 142:1321–31. doi:10.1016/j.jclepro.2016.09.179.
  • Fiore, V., T. Scalici, and A. J. C. P. Valenza. 2014. Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydrate Polymers 106:77–83. doi:10.1016/j.carbpol.2014.02.016.
  • Furtos, G., L. Molnar, L. Silaghi-Dumitrescu, P.Pascuta, and K. Korniejenko. 2021a. Mechanical and thermal properties of wood fiber reinforced geopolymer composites. Journal of Natural Fibers. Advance online publication. doi: 10.1080/15440478.2021.1929655.
  • Furtos, G., L. Silaghi-Dumitrescu, P. Pascuta, C.Sarosi, and K. Korniejenko. 2021b. Mechanical properties of wood fiber reinforced geopolymer composites with sand addition. Journal of Natural Fibers 18 (2):285–96. doi:10.1080/15440478.2019.1621792.
  • Ganapathy, T., R. Sathiskumar, P. Senthamaraikannan, S. S. Saravanakumar, and Anish Khan. 2019. Characterization of raw and alkali treated new natural cellulosic fibres extracted from the aerial roots of banyan tree. International Journal of Biological Macromolecules 138:573–81. doi:10.1016/j.ijbiomac.2019.07.136.
  • Ghalehno, M.D., B.N. Sheshkal, F.Kool, M. Humar, and M.Bahmani. 2021. Characterization of anatomical, morphological, physical and chemical properties of konar (ziziphus spina-christi) wood. Wood Research 66 (6):912–20. doi:10.37763/wr.1336-4561/66.6.912920.
  • Hyness, N. Rajesh Jesudoss, N. J. Vignesh, P. Senthamaraikannan, S. S. Saravanakumar, and M. R. Sanjay. 2018. Characterization of new natural cellulosic fiber from heteropogon contortus plant. Journal of Natural Fibers 15 (1):146–53. doi:10.1080/15440478.2017.1321516.
  • Illayaperumal,C. and R. Sarala. 2020. Characterization of a new natural cellulosic fiber extracted from derris scandens stem. International Journal of Biological Macromolecules 165:2303–13. doi:10.1016/j.ijbiomac.2020.10.086.
  • Indran, S., and R. Edwin Raj. 2015. Characterization of new natural cellulosic fiber from Cissus quadrangularis stem. Carbohydrate Polymers 117:392–99. doi:10.1016/j.carbpol.2014.09.072.
  • Manimaran, P., M. R. Sanjay, P. Senthamaraikannan, Mohammad Jawaid, S. S. Saravanakumar, and Raji George. 2019a. Synthesis and characterization of cellulosic fiber from red banana peduncle as reinforcement for potential applications. Journal of Natural Fibers 16 (5):768–80. doi:10.1080/15440478.2018.1434851.
  • Manimaran, P., S. P. Saravanan, M. R. Sanjay, Suchart Siengchin, Mohammad Jawaid, and Anish Khan. 2019b. Characterization of new cellulosic fiber: Dracaena reflexa as a reinforcement for polymer composite structures. Journal of Materials Research and Technology 8 (2):1952–63. doi:10.1016/j.jmrt.2018.12.015.
  • Manimaran, P., P. Senthamaraikannan, M. R. Sanjay, M. K. Marichelvam, and Mohammad Jawaid. 2018. Study on characterization of Furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydrate Polymers 181:650–58. doi:10.1016/j.carbpol.2017.11.099.
  • Mayandi, K., N. Rajini, P. Pitchipoo, J.W.Jappes, and A.V. Rajulu. 2016. Extraction and characterization of new natural lignocellulosic fiber cyperus pangorei. International Journal of Polymer Analysis and Characterization 21 (2):175–83. doi:10.1080/1023666X.2016.1132064.
  • Moshi, A.A.M, D. Ravindran, SR Sundara Bharathi, S. Indran, S. S. Saravanakumar, and Yucheng Liu. 2020. Characterization of a new cellulosic natural fiber extracted from the root of Ficus religiosa tree. International Journal of Biological Macromolecules 142:212–21. doi:10.1016/j.ijbiomac.2019.09.094.
  • NagarajaGanesh, B., and R. Muralikannan. 2016. Physico-chemical, thermal, and flexural characterization of cocos nucifera fibers. International Journal of Polymer Analysis and Characterization 21 (3):244–50. doi:10.1080/1023666X.2016.1139359.
  • Narayanasamy, P., P. Balasundar, S. Senthil, M. R. Sanjay, S. Siengchin, and A. Khan. 2020. Characterization of a novel natural cellulosic fiber from calotropis gigantea fruit bunch for ecofriendly polymer composites. International Journal of Biological Macromolecules 150:793–801. doi:10.1016/j.ijbiomac.2020.02.134.
  • Nijandhan, K., R. Muralikannan, and S. Venkatachalam. 2018. Ricinus communis fiber as potential reinforcement for lightweight polymer composites. Materials Research Express 5 (9):095307. doi:10.1088/2053-1591/aad617.
  • Prithiviraj, M., R. Muralikannan, P. Senthamaraikannan, and S. S. Saravanakumar. 2016. Characterization of new natural cellulosic fiber from the perotis indica plant. International Journal of Polymer Analysis and Characterization 21 (8):669–74. doi:10.1080/1023666X.2016.1202466.
  • Saravanakumar, S. S., A. Kumaravel, T. Nagarajan, P. Sudhakar, and R. Baskaran. 2013. Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydrate Polymers 92 (2):1928–33. doi:10.1016/j.carbpol.2012.11.064.
  • Seki, Y., M.Sarikanat, K.Sever, and C.Durmuşkahya. 2013. Extraction and properties of ferula communis (chakshir) fibers as novel reinforcement for composites materials. Composites Part B: Engineering 44 (1):517–23. doi:10.1016/j.compositesb.2012.03.013.
  • Senthamaraikannan, P., and M. Kathiresan. 2018. Characterization of raw and alkali treated new natural cellulosic fiber from coccinia grandis. L. Carbohydrate Polymers 186:332–43. doi:10.1016/j.carbpol.2018.01.072.
  • Senthamaraikannan, P., M. R. Sanjay, K. Subrahmanya Bhat, N. H. Padmaraj, and Mohammad Jawaid. 2019. Characterization of natural cellulosic fiber from bark of albizia amara. Journal of Natural Fibers 16 (8):1124–31. doi:10.1080/15440478.2018.1453432.
  • Shanmugasundaram, N., I. Rajendran, and T. Ramkumar. 2018. Characterization of untreated and alkali treated new cellulosic fiber from an areca palm leaf stalk as potential reinforcement in polymer composites. Carbohydrate Polymers 195:566–75. doi:10.1016/j.carbpol.2018.04.127.
  • Md. Jabihulla Shariff, S. Madhu, Sudhir Chakravarthy K, and Juvvi Siva Naga Raju. 2022. Characterization of natural cellulose fibers from the stem of albizia julibrissin as reinforcement for polymer composites. Journal of Natural Fibers Advance online publication. 19 (6):2204–17. doi:10.1080/15440478.2020.1807440.
  • Siva, R., T. N. Valarmathi, K. Palanikumar, and Antony V. Samrot. 2020. Study on a novel natural cellulosic fiber from kigelia africana fruit: Characterization and analysis. Carbohydrate Polymers 244:116494. doi:10.1016/j.carbpol.2020.116494.
  • Suresh Kumar, SM, D. Duraibabu, and K. Subramanian. 2014. Studies on mechanical, thermal and dynamic mechanical properties of untreated (raw) and treated coconut sheath fiber reinforced epoxy composites. Materials & Design 59:63–69. doi:10.1016/j.matdes.2014.02.013.
  • Umashankaran, M., and S. Gopalakrishnan. 2020. Effect of sodium hydroxide treatment on physico-chemical, thermal, tensile and surface morphological properties of pongamia pinnata L. bark fiber. Journal of Natural Fibers Advance online publication. 18 (12):2063–76. doi:10.1080/15440478.2019.1711287.
  • Vijay, R., D. Lenin Singaravelu, A. Vinod, M. R. Sanjay, and Suchart Siengchin. 2021a. Characterization of alkali-treated and untreated natural fibers from the stem of parthenium hysterophorus. Journal of Natural Fibers 18 (1):80–90. doi:10.1080/15440478.2019.1612308.
  • Vijay, R., S. Manoharan, S. Arjun, A. Vinod, and D. Lenin Singaravelu. 2021b. “Characterization of silane-treated and untreated natural fibers from stem of leucas aspera”. Journal of Natural Fibers 18 (12):1957–73. doi:10.1080/15440478.2019.1710651.
  • Vinod, A., R. Vijay, D. Lenin Singaravelu, A. Khan, M.R.Sanjay, S. Siengchin, F. Verpoort, K.A.Alamry, and A.M. Asiri. 2020. Effect of alkali treatment on performance characterization of ziziphus mauritiana fiber and its epoxy composites. Journal of Industrial Textiles Advance online publication. 51 (2_suppl):2444S–66S. doi:10.1177/1528083720942614.
  • Vinod, A., R. Vijay, D. Lenin Singaravelu, M. R. Sanjay, Suchart Siengchin, and M. M. Moure. 2019. Characterization of untreated and alkali treated natural fibers extracted from the stem of catharanthus roseus. Materials Research Express 6 (8):85406. doi:10.1088/2053-1591/ab22d9.
  • Vinod, A., TG Yashas Gowda, R. Vijay, M. R. Sanjay, Munish Kumar Gupta, Muhammad Jamil, Vinod Kushvaha, and Suchart Siengchin. 2021. Novel muntingia calabura bark fiber reinforced green-epoxy composite: A sustainable and green material for cleaner production. Journal of Cleaner Production 294:126337. doi:10.1016/j.jclepro.2021.126337.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.