639
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cellulose Source Tailors the Physical and Structural Properties of Double-Functionalized Aerogels

ORCID Icon, ORCID Icon, & ORCID Icon

References

  • Abouzeid, R. E., R. Khiari, N. El-Wakil, and A. Dufresne. 2019. Current state and new trends in the use of cellulose nanomaterials for wastewater treatment. Biomacromolecules 20 (2):573–15. doi:10.1021/acs.biomac.8b00839.
  • Aegerter, M., N. Leventis, and M. Koebel. 2011. Aerogels handbook (advances in sol-gel derived materials and technologies). New York: Springer. http://link.springer.com/content/pdf/10.1007/978-1-4419-7589-8.pdf%5Cnhttp://books.google.com/books?hl=en&lr=&id=3FXWzJFOlnAC&oi=fnd&pg=PA2&dq=Aerogels+Handbook&ots=MbUN5K6W9d&sig=5wg6moGTmfyVqBaD9YiAgvtub6I.
  • BARROS, M. D. O. 2016. Avaliação do permeado DE caju como meio DE cultivo alternativo para a produção DE celulose bacteriana. Instituto Federal DE Educação, Ciência E Tecnologia Do Estado Do Ceará 1: 42.
  • Beh, J. H., T. H. Lim, J. H. Lew, and J. C. Lai. 2020. Cellulose nanofibril-based aerogel derived from sago pith waste and its application on methylene blue removal. International Journal of Biological Macromolecules 160: 160. doi: 10.1016/j.ijbiomac.2020.05.227.
  • Besbes, I., S. Alila, and S. Boufi. 2011. Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydrate Polymers 84 (3):975–83. doi:10.1016/j.carbpol.2010.12.052.
  • Boukind, S., S. Sair, H. Ait Ousaleh, S. Mansouri, M. Zahouily, Y. Abboud, and A. El Bouari. 2021. Ambient pressure drying as an advanced approach to the synthesis of silica aerogel composite for building thermal insulation. Journal of Natural Fibers 29:1–15. October. doi:10.1080/15440478.2021.1993486.
  • Cheng, H., B. Gu, M. P. Pennefather, T. X. Nguyen, N. Phan-Thien, and H. M. Duong. 2017. Cotton aerogels and cotton-cellulose aerogels from environmental waste for oil spillage cleanup. Materials & Design 130 (May):452–58. doi:10.1016/j.matdes.2017.05.082.
  • Chen, Y., S. Yang, D. Fan, G. Li, and S. Wang. 2019. Dual-enhanced hydrophobic and mechanical properties of long-range 3D anisotropic binary-composite nanocellulose foams via bidirectional gradient freezing. ACS Sustainable Chemistry & Engineering 7 (15):12878–86. doi:https://doi.org/10.1021/acssuschemeng.9b01806.
  • Chen, W., H. Yu, Q. Li, Y. Liu, and J. Li. 2011. Ultralight and highly flexible aerogels with long cellulose i nanofibers. Soft Matter 7 (21):10360–68. doi:http://dx.doi.org/10.1039/C1SM06179H.
  • de Amorim, J. D. P., K. C. de Souza, C. R. Duarte, I. da Silva Duarte, F. de Assis Sales Ribeiro, G. S. Silva, P. M. A. de Farias, A. Stingl, A. F. S. Costa, G. M. Vinhas, et al. 2020. Plant and bacterial nanocellulose: Production, properties and applications in medicine, food, cosmetics, electronics and engineering. a review. Environmental Chemistry Letters. 18(3):851–69. doi:10.1007/s10311-020-00989-9.
  • De Azeredo, H. M. C. 2009. Nanocomposites for food packaging applications. Food Research International 42 (9):1240–53. doi:http://dx.doi.org/10.1016/j.foodres.2009.03.019.
  • Dufresne, A. 2012. Nanocellulose: From nature to high performance tailored materials. De Gruyter Textbook. De Gruyter. https://books.google.com.br/books?id=xa56tgAACAAJ.
  • Fan, P., Y. Yuan, J. Ren, B. Yuan, Q. He, G. Xia, F. Chen, and R. Song. 2017. Facile and green fabrication of cellulose based aerogels for lampblack filtration from waste newspaper. Carbohydrate Polymers 162:108–14. doi:http://dx.doi.org/10.1016/j.carbpol.2017.01.015.
  • Feng, J., S. T. Nguyen, Z. Fan, and H. M. Duong. 2015. Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chemical Engineering Journal 270:168–175. doi:10.1016/j.cej.2015.02.034 https://linkinghub.elsevier.com/retrieve/pii/S1385894715002326 .
  • Garcia-Bordejé, E., A. M. Benito, and W. K. Maser. 2021. Graphene aerogels via hydrothermal gelation of graphene oxide colloids: fine-tuning of its porous and chemical properties and catalytic applications. Advances in Colloid and Interface Science 292:102420. doi:10.1016/j.cis.2021.102420.
  • Guan, Y., J. Rao, Y. Wu, H. Gao, S. Liu, G. Chen, and F. Peng. 2020. Hemicelluloses-based magnetic aerogel as an efficient adsorbent for Congo red. International Journal of Biological Macromolecules 155:369–75. doi:10.1016/j.ijbiomac.2020.03.231.
  • Heath, L., and W. Thielemans. 2010. Cellulose Nanowhisker Aerogels. Green Chemistry 12 (8):1448. doi:10.1039/c0gc00035c.
  • Hosseini, H., M. Teymouri, S. Saboor, A. Khalili, V. Goodarzi, F. Poudineh Hajipoor, H. A. Khonakdar, S. Shojaei, A. Asefnejad, and H. Bagheri. 2019. Challenge between sequence presences of conductive additives on flexibility, dielectric, and supercapacitance behaviors of nanofibrillated template of bacterial cellulose aerogels. European Polymer Journal 115 (March):335–45. doi:10.1016/j.eurpolymj.2019.03.033.
  • Hosseini, H., A. Zirakjou, V. Goodarzi, S. M. Mousavi, H. A. Khonakdar, and S. Zamanlui. 2020. Lightweight aerogels based on bacterial cellulose/silver nanoparticles/polyaniline with tuning morphology of polyaniline and application in soft tissue engineering. International Journal of Biological Macromolecules 152:57–67. doi:10.1016/j.ijbiomac.2020.02.095.
  • Huang, C., H. Ji, Y. Yang, B. Guo, L. Luo, Z. Meng, L. Fan, and J. Xu. 2020. TEMPO-oxidized bacterial cellulose nanofiber membranes as high-performance separators for lithium-ion batteries. Carbohydrate Polymers 230:115570. doi:https://doi.org/10.1016/j.carbpol.2019.115570.
  • Hussain, Z., W. Sajjad, T. Khan, and F. Wahid. 2019. Production of bacterial cellulose from industrial wastes: A review. Cellulose 26 (5):2895–911. doi:10.1007/s10570-019-02307-1.
  • Isogai, A., and Y. Kato. 1998. Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose February. 5(33):153–64. doi: 10.1023/A:1009208603673.
  • Isogai, A., T. Saito, and H. Fukuzumi. 2011. TEMPO-oxidized cellulose nanofibers. Nanoscale 3 (1):71–85. doi:10.1039/C0NR00583E.
  • Jang, W. D., T. Y. Kim, H. U. Kim, W. Y. Shim, J. Y. Ryu, J. H. Park, and S. Y. Lee. 2019. Genomic and metabolic analysis of komagataeibacter xylinus DSM 2325 producing bacterial cellulose nanofiber. Biotechnology and Bioengineering 116 (12):3372–81. doi:10.1002/bit.27150.
  • Jiang, F., and Y. Lo Hsieh. 2016. Self-assembling of TEMPO oxidized cellulose nanofibrils as affected by protonation of surface carboxyls and drying methods. ACS Sustainable Chemistry & Engineering 4 (3):1041–49. doi:10.1021/acssuschemeng.5b01123.
  • Jin, C., S. Han, J. Li, and Q. Sun. 2015. Fabrication of cellulose-based aerogels from waste newspaper without any pretreatment and their use for absorbents. Carbohydrate Polymers 123:150–56. doi:http://dx.doi.org/10.1016/j.carbpol.2015.01.056.
  • Jozala, A. F., R. A. N. Pértile, C. A. dos Santos, V. de Carvalho Santos-Ebinuma, M. M. Seckler, F. M. Gama, and A. Pessoa. 2015. Bacterial cellulose production by gluconacetobacter xylinus by employing alternative culture media. Applied Microbiology and Biotechnology 99 (3):1181–90. doi:10.1007/s00253-014-6232-3.
  • Klemm, D., F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, and A. Dorris. 2011. Nanocelluloses: A new family of nature-based materials. Angewandte Chemie International Edition 24 (24):5438–66. doi:10.1002/anie.201001273.
  • Kvien, I., and K. Oksman. 2007. Orientation of cellulose nanowhiskers in polyvinyl alcohol. Applied Physics A, Materials Science & Processing 87 (4):641–43. doi:10.1007/s00339-007-3882-3.
  • Laitinen, O., T. Suopajärvi, M. Österberg, and H. Liimatainen. 2017. Hydrophobic, superabsorbing aerogels from choline chloride-based deep eutectic solvent pretreated and silylated cellulose nanofibrils for selective oil removal. ACS Applied Materials & Interfaces 9 (29):25029–37. doi:10.1021/acsami.7b06304.
  • Motta Neves, R., K. Silveira Lopes, M. G. V. Zimmermann, M. Poletto, and A. J. Zattera. 2020. Cellulose nanowhiskers extracted from tempo-oxidized curaua fibers. Journal of Natural Fibers 17 (9):1355–65. doi:10.1080/15440478.2019.1568346.
  • Nguyen, S. T., J. Feng, S. K. Ng, J. P. W. Wong, V. B. C. Tan, and H. M. Duong. 2014. Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloids and Surfaces A, Physicochemical and Engineering Aspects 445:128–34. doi:10.1016/j.colsurfa.2014.01.015
  • Nyakuma, B. B., S. Wong, L. N. Utume, T. A. T. Abdullah, M. Abba, O. Oladokun, T. J. P. Ivase, and E. B. Ogunbode. 2021. Comprehensive characterisation of the morphological, thermal and kinetic degradation properties of gluconacetobacter xylinus synthesised bacterial nanocellulose. Journal of Natural Fibers 00 (00):1–14. doi:10.1080/15440478.2021.1907833.
  • Pereira, A. L. S., J. P. A. Feitosa, J. P. S. Morais, and M. de F Rosa. 2020.Bacterial cellulose aerogels: Influence of oxidation and silanization on mechanical and absorption properties. Carbohydrate Polymers 250: 250.doi: 10.1016/j.carbpol.2020.116927.
  • Piperopoulos, E., A. Khaskhoussi, V. Fiore, and L. Calabrese. 2021. Surface modified Arundo donax natural fibers for oil spill recovery. Journal of Natural Fibers September. 6:1–16. doi: 10.1080/15440478.2021.1961343.
  • Poddar, M. K., and P. K. Dikshit. 2021. Recent development in bacterial cellulose production and synthesis of cellulose based conductive polymer nanocomposites. Nano Select 2 (9):1605–28. doi:10.1002/nano.202100044.
  • Rathinamoorthy, R., T. Aarthi, C. A. Aksaya Shree, P. Haridharani, V. Shruthi, and R. L. Vaishnikka. 2021. Development and characterization of self-assembled bacterial cellulose nonwoven film. Journal of Natural Fibers 18 (11):1857–70. doi:10.1080/15440478.2019.1701609.
  • Rathinamoorthy, R., and T. Kiruba. 2020. Bacterial cellulose-A potential material for sustainable eco-friendly fashion products. Journal of Natural Fibers 00 (00):1–13. doi:10.1080/15440478.2020.1842841.
  • Rivas, B., A. B. Moldes, J. M. Domínguez, and J. C. Parajó. 2004. Development of culture media containing spent yeast cells of debaryomyces hansenii and corn steep liquor for lactic acid production with lactobacillus rhamnosus. International Journal of Food Microbiology 97 (1):93–98. doi:10.1016/j.ijfoodmicro.2004.05.006.
  • Römling, U., and M. Y. Galperin. 2015. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends in Microbiology 23 (9):545–57. doi:10.1016/j.tim.2015.05.005.
  • Ross P, Mayer R and Benziman M. 1991. Cellulose biosynthesis and function in bacteria. Microbiological Reviews, 55(1),35–58. doi:10.1128/MMBR.55.1.35-58.1991.
  • Sacui, I. A., R. C. Nieuwendaal, D. J. Burnett, S. J. Stranick, M. Jorfi, C. Weder, E. J. Foster, R. T. Olsson, and J. W. Gilman. 2014. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Applied Materials & Interfaces 6 (9):6127–38. doi:10.1021/am500359f.
  • Saito, T., and A. Isogai. 2004. TEMPO-mediated oxidation of native cellulose. the effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5 (5):1983–89. doi:10.1021/bm0497769.
  • Saito, T., S. Kimura, Y. Nishiyama, and A. Isogai. 2007. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8 (8):2485–91. doi:10.1021/bm0703970.
  • Sai, H., L. Xing, J. Xiang, L. Cui, J. Jiao, C. Zhao, Z. Li, F. Li, and T. Zhang. 2014. Flexible aerogels with interpenetrating network structure of bacterial cellulose–silica composite from sodium silicate precursor via freeze drying process. RSC Advances 4 (57):30453. doi:10.1039/C4RA02752C.
  • Schramm, M., and S. Hestrin. 1954. Factors affecting production of cellulose at the air/liquid interface of a culture of acetobacter xylinum. Journal of General Microbiology August. 11(1):123–29. doi: 10.1099/00221287-11-1-123.
  • Sharma, A., M. Thakur, M. Bhattacharya, T. Mandal, and S. Goswami. 2019. Commercial application of cellulose nano-composites – a review. Biotechnology Reports 21:e00316. doi:10.1016/j.btre.2019.e00316.
  • Takeshita, S., S. Zhao, W. J. Malfait, and M. M. Koebel. 2021. Chemistry of chitosan aerogels: Three-dimensional pore control for tailored applications. Angewandte Chemie International Edition 60 (18):9828–51. doi:10.1002/anie.202003053.
  • Tanpichai, S., and E. Wimolmala. 2021. Facile single-step preparation of cellulose nanofibers by TEMPO-mediated oxidation and their nanocomposites. Journal of Natural Fibers (November 9):1–17. doi:10.1080/15440478.2021.1993483.
  • Wang, Z., S. Wu, Y. Zhang, L. Miao, Y. Zhang, and A. Wu. 2020. Preparation of modified sodium alginate aerogel and its application in removing lead and cadmium ions in wastewater. International Journal of Biological Macromolecules 157:687–94. doi:10.1016/j.ijbiomac.2019.11.228.
  • Wan, C., Y. Lu, Y. Jiao, C. Jin, Q. Sun, and J. Li. 2015. Ultralight and hydrophobic nanofibrillated cellulose aerogels from coconut shell with ultrastrong adsorption properties. Journal of Applied Polymer Science 132 (24):n/a–n/a. doi:10.1002/app.42037.
  • Wu, C.-N., and K.-C. Cheng. 2017. Strong, thermal-stable, flexible, and transparent films by self-assembled TEMPO-oxidized bacterial cellulose nanofibers. Cellulose 24 (1):269–83. doi:10.1007/s10570-016-1114-8.
  • Wu, C. N., S. C. Fuh, S. P. Lin, Y. Y. Lin, H. Y. Chen, J. M. Liu, and K. C. Cheng. 2018. TEMPO-oxidized bacterial cellulose pellicle with silver nanoparticles for wound dressing. Biomacromolecules 19 (2):544–54. doi:10.1021/acs.biomac.7b01660.
  • Wu, Q., J. Hu, S. Cao, S. Yu, and L. Huang. 2020. Heteroatom-doped hierarchical porous carbon aerogels from chitosan for high performance supercapacitors. International Journal of Biological Macromolecules 155:131–41. doi:10.1016/j.ijbiomac.2020.03.202.
  • Xiao, S., R. Gao, Y. Lu, J. Li, and Q. Sun. 2015. Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles. Carbohydrate Polymers 119:202–09. doi:10.1016/j.carbpol.2014.11.041.
  • Yousefi, H., M. Faezipour, S. Hedjazi, M. M. Mousavi, Y. Azusa, and A. H. Heidari. 2013. Comparative study of paper and nanopaper properties prepared from bacterial cellulose nanofibers and fibers/ground cellulose nanofibers of canola straw. Industrial Crops and Products 43 (1):732–37. doi:http://dx.doi.org/10.1016/j.indcrop.2012.08.030.
  • Zhang, Z., G. Sèbe, D. Rentsch, T. Zimmermann, and P. Tingaut. 2014. Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chemistry of Materials 26 (8):2659–68. doi:10.1021/cm5004164.
  • Zhang, Z., P. Tingaut, D. Rentsch, T. Zimmermann, and G. Sèbe. 2015. Controlled silylation of nanofibrillated cellulose in water: Reinforcement of a model polydimethylsiloxane network. ChemSuschem 8 (16):2681–90. doi:10.1002/cssc.201500525.