1,475
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Preparation of a Reactive Phosphorus/nitrogen-Based Intumescent Flame Retardant Coating for Cotton Fabrics

, , , &

References

  • Abdelkhalik, A., G. Makhlouf, and M. A. Hassan. 2019. Manufacturing, thermal stability, and flammability properties of polypropylene containing new single molecule intumescent flame retardant. Polymers for Advanced Technologies 30 (6):1403–15. doi:10.1002/pat.4573.
  • Alongi, J., R. A. Carletto, A. Di Blasio, F. Carosio, F. Bosco, and G. Malucelli. 2013. DNA: A novel, green, natural flame retardant and suppressant for cotton. Journal of Materials Chemistry A 1 (15):4779–85. doi:10.1039/c3ta00107e.
  • Balint, E., J. Takacs, L. Drahos, A. Juranovic, M. Kocevar, and G. Keglevich. 2013. α-Aminophosphonates and α-Aminophosphine Oxides by the Microwave-Assisted Kabachnik-Fields Reactions of 3-Amino-6-methyl-2H-pyran-2-ones. Heteroatom Chemistry 24 (3):221–25. doi:10.1002/hc.21086.
  • Bellayer, S., M. Jimenez, B. Prieur, B. Dewailly, A. Ramgobin, J. Sarazin, B. Revel, G. Tricot, and S. Bourbigot. 2018. Fire retardant sol-gel coated polyurethane foam: Mechanism of action. Polymer Degradation and Stability 147:159–67. doi:10.1016/j.polymdegradstab.2017.12.005.
  • Castellano, A., C. Colleoni, G. Iacono, A. Mezzi, M. R. Plutino, G. Malucelli, and G. Rosace. 2019. Synthesis and characterization of a phosphorous/nitrogen based sol-gel coating as a novel halogen-and formaldehyde-free flame retardant finishing for cotton fabric. Polymer Degradation and Stability 162:148–59. doi:10.1016/j.polymdegradstab.2019.02.006.
  • Cheng, X. W., R. C. Tang, F. Yao, and X. H. Yang. 2019. Flame retardant coating of wool fabric with phytic acid/polyethyleneimine polyelectrolyte complex. Progress in Organic Coatings 132:336–42. doi:10.1016/j.porgcoat.2019.04.018.
  • Chen, S., H. Li, X. Lai, S. Zhang, and X. Zeng. 2021. Superhydrophobic and phosphorus-nitrogen flame-retardant cotton fabric. Progress in Organic Coatings 159:106446. doi:10.1016/j.porgcoat.2021.106446.
  • Cytlak, T., M. Skibińska, P. Kaczmarek, M. Kaźmierczak, M. Rapp, M. Kubicki, and H. Koroniak. 2018. Functionalization of α-hydroxyphosphonates as a convenient route to N-tosyl-α-aminophosphonates. RSC advances 8 (22):11957–74. doi:10.1039/C8RA01656A.
  • Dong, Y., L. Hou, and P. Wu. 2020. Exploring the diffusion behavior of urea aqueous solution in the viscose film by ATR-FTIR spectroscopy. Cellulose 27 (5):2403–15. doi:10.1007/s10570-020-02997-y.
  • Fang, F., X. Zhang, Y. Meng, Z. Gu, C. Bao, X. Ding, S. Li, X. Chen, and X. Tian. 2015. Intumescent flame retardant coatings on cotton fabric of chitosan and ammonium polyphosphate via layer-by-layer assembly. Surface & Coatings Technology 262:9–14. doi:10.1016/j.surfcoat.2014.11.011.
  • Gaan, S., and G. Sun. 2007. Effect of phosphorus and nitrogen on flame retardant cellulose: A study of phosphorus compounds. Journal of Analytical and Applied Pyrolysis 78 (2):371–77. doi:10.1016/j.jaap.2006.09.010.
  • Grancaric, A. M., C. Colleoni, E. Guido, L. Botteri, and G. Rosace. 2017. Thermal behaviour and flame retardancy of monoethanolamine-doped sol-gel coatings of cotton fabric. Progress in Organic Coatings 103:174–81. doi:10.1016/j.porgcoat.2016.10.035.
  • Guizani, C., K. Haddad, L. Limousy, and M. Jeguirim. 2017. New insights on the structural evolution of biomass char upon pyrolysis as revealed by the Raman spectroscopy and elemental analysis. Carbon 119:519–21. doi:10.1016/j.carbon.2017.04.078.
  • Horrocks, A. R. 2011. Flame retardant challenges for textiles and fibers: New chemistry versus innovatory solutions. Polymer Degradation and Stability 96 (3):377–92. doi:10.1016/j.polymdegradstab.2010.03.036.
  • Huang, T., F. Xu, P. Zhao, P. Wang, F. Zhang, and G. Zhang. 2021. A novel flame retardant for cotton containing ammonium phosphonic acid and phosphonate prepared from urea. Journal of Natural Fibers 19 (15):1–14. doi:10.1080/15440478.2021.2002779.
  • Jiang, Y., P. Yan, Y. Wang, C. Zhou, and J. Lei. 2018. Form-stable phase change materials with enhanced thermal stability and fire resistance via the incorporation of phosphorus and silicon. Materials & Design 160:763–71. doi:10.1016/j.matdes.2018.10.020.
  • Li, N., J. Ming, R. Yuan, S. Fan, L. Liu, F. Li, X. Wang, J. Yu, and D. Wu. 2019. Novel eco-friendly flame retardants based on nitrogen–silicone Schiff base and application in cellulose. ACS Sustainable Chemistry & Engineering 8 (1):290–301. doi:10.1021/acssuschemeng.9b05338.
  • Liu, J., C. Dong, Z. Zhang, H. Sun, D. Kong, and Z. Lu. 2020. Durable flame retardant cotton fabrics modified with a novel silicon–phosphorus–nitrogen synergistic flame retardant. Cellulose 27 (15):9027–43. doi:10.1007/s10570-020-03370-9.
  • Liu, Y., Y. T. Pan, X. Wang, P. Acuña, P. Zhu, U. Wagenknecht, G. Heinrich, X. Q. Zhang, R. Wang, and D. Y. Wang. 2016. Effect of phosphorus-containing inorganic-organic hybrid coating on the flammability of cotton fabrics: Synthesis, characterization and flammability. Chemical Engineering Journal 294:167–75. doi:10.1016/j.cej.2016.02.080.
  • Liu, Z., M. Xu, Q. Wang, and B. Li. 2017. A novel durable flame retardant cotton fabric produced by surface chemical grafting of phosphorus-and nitrogen-containing compounds. Cellulose 24 (9):4069–81. doi:10.1007/s10570-017-1391-x.
  • Liu, Y., Y. Zhang, Z. Cao, and Z. Fang. 2013. Synthesis and performance of three flame retardant additives containing diethyl phosphite/phenyl phosphonic moieties. Fire safety journal 61:185–92. doi:10.1016/j.firesaf.2013.09.009.
  • Lv, M., X. Ma, D. P. Anderson, and P. R. Chang. 2018. Immobilization of urease onto cellulose spheres for the selective removal of urea. Cellulose 25 (1):233–43. doi:10.1007/s10570-017-1592-3.
  • Makhlouf, G., A. Abdelkhalik, and H. Ameen. 2021. Synthesis of a novel highly efficient flame-retardant coating for cotton fabrics with low combustion toxicity and antibacterial properties. Cellulose 28 (13):8785–806. doi:10.1007/s10570-021-04076-2.
  • Nazir, R., D. Parida, J. Borgstädt, S. Lehner, M. Jovic, D. Rentsch, E. Bülbül, A. Huch, S. Altenried, Q. Ren, et al. 2021. In-situ phosphine oxide physical networks: A facile strategy to achieve durable flame retardant and antimicrobial treatments of cellulose. Chemical Engineering Journal 417:128028. doi:10.1016/j.cej.2020.128028.
  • Qutab, H. G., M. Mohsin, N. Ramzan, S. W. Ahmad, and S. Sardar. 2021. Synthesis and application of a formaldehyde-free flame-retardant for cotton fabrics by polymerization between diammonium hydrogen phosphate and citric acid. Journal of Natural Fibers 18 (11):1913–23. doi:10.1080/15440478.2019.1710648.
  • Rosace, G., V. Migani, E. Guido, and C. Colleoni. 2015. Flame retardant finishing for textiles. In Flame Retardants, ed. P. M. Visakh and Y. Arao, 209–46. Switzerland: Springer, Cham.
  • Siow, K. S., L. Britcher, S. Kumar, and H. J. Griesser. 2014. Deposition and XPS and FTIR analysis of plasma polymer coatings containing phosphorus. Plasma Processes and Polymers 11 (2):133–41. doi:10.1002/ppap.201300115.
  • Vahabi, H., R. Sonnier, and L. Ferry. 2015. Effects of ageing on the fire behavior of flame-retarded polymers: A review. Polymer International 64 (3):313–28. doi:10.1002/pi.4841.
  • Wang, S., S. Ma, C. Xu, Y. Liu, J. Dai, Z. Wang, X. Liu, J. Chen, X. Shen, J. Wei, et al. 2017. Vanillin-derived high-performance flame retardant epoxy resins: Facile synthesis and properties. Macromolecules 50 (5):1892–901. doi:10.1021/acs.macromol.7b00097.
  • Zhang, A. N., H. B. Zhao, J. B. Cheng, M. E. Li, S. L. Li, M. Cao, and Y. Z. Wang. 2021. Construction of durable eco-friendly biomass-based flame-retardant coating for cotton fabrics. Chemical Engineering Journal 410:128361. doi:10.1016/j.cej.2020.128361.