1,524
Views
9
CrossRef citations to date
0
Altmetric
Research Article

INVESTIGATION ON PHYSICO-CHEMICAL, MECHANICAL AND THERMAL PROPERTIES OF EXTRACTED NOVEL PINUS ROXBURGHII FIBER

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Akin, D. E., G. Henriksson, J. D. Evans, A. P. S. Adamsen, J. A. Foulk, and R. B. Dodd. 2004. Progress in enzyme-retting of flax. Journal of Natural Fibers 1 (1):21–15. doi:10.1300/J395v01n01_03.
  • Alotaibi, M. D., B. A. Alshammari, N. Saba, O. Y. Alothman, M. R. Sanjay, Z. Almutairi, and M. Jawaid. 2019. Characterisation of natural fiber obtained from different parts of date palm tree (Phoenix dactylifera L.). International Journal of Biological Macromolecules 135:69–76. doi:10.1016/j.ijbiomac.2019.05.102.
  • Amutha, V., and B. Senthilkumar. 2021. Physical, chemical, thermal, and surface morphological properties of the bark fiber extracted from acacia concinna plant. Journal of Natural Fibers 18 (11):1661–74. doi:10.1080/15440478.2019.1697986.
  • Babu, B. G., D. Princewinston, S. S. Saravanakumar, A. Khan, P. V. A. Bhaskar, S. Indran, and D. Divya. 2022. Investigation on the physicochemical and mechanical properties of novel alkali-treated Phaseolus vulgaris fibers. Journal of Natural Fibers 19 (2):770–81. doi:10.1080/15440478.2020.1761930.
  • Bledzki, A. K., and J. Gassan. 1999. Composites reinforced with cellulose-based fibers. Progress in Polymer Science 24 (2):221–74. doi:10.1016/S0079-6700(98)00018-5.
  • Davies, P., C. Morvan, O. Sire, and C. Baley. 2007. Structure and properties of fibres from sea-grass (Zostera marina). Journal of Materials Science 42 (13):4850–57. doi:10.1007/s10853-006-0546-1.
  • Faruk, O., A. K. Bledzki, H. P. Fink, and M. Sain. 2012. Biocomposites reinforced with natural fibers: 2000– 2010. Progress in Polymer Science 37 (11):1552–96. doi:10.1016/j.progpolymsci.2012.04.003.
  • Fiore, V., T. Scalici, and A. Valenza. 2014. Characterisation of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydrate Polymer 106:77–83. doi:10.1016/j.carbpol.2014.02.016.
  • Gairola, S., S. Gairola, H. Sharma, and P. K. Rakesh. 2019. Impact behavior of pine needle fiber/pistachio shell filler-based epoxy composite. Journal of Physics Conference Series, Kurukshetra, Haryana, India, 2019 February 18–22, 1240:1–7.
  • Hyness, N. R. J., N. J. Vignesh, P. Senthamaraikannan, S. S. Saravanakumar, and M. R. Sanjay. 2018. Characterisation of new natural cellulosic fiber from heteropogon contortus plant. Journal of Natural Fibers 15 (1):146–53. doi:10.1080/15440478.2017.1321516.
  • Indran, S., and R. E. Raj. 2015. Characterisation of new natural cellulosic fiber from Cissus quadrangularis stem. Carbohydrate Polymer 117:392–99. doi:10.1016/j.carbpol.2014.09.072.
  • Indran, S., R. E. Raj, and V. S. Sreenivasan. 2014. Characterisation of new natural cellulosic fiber from Cissus quadrangularis root. Carbohydrate Polymer 110:423–29. doi:10.1016/j.carbpol.2014.04.051.
  • Jeyabalaji, V., G. R. Kannan, P. Ganeshan, K. Raja, B. NagarajaGanesh, and P. Raju. 2021. Extraction and characterization studies of cellulose derived from the roots of Acalypha Indica L. Journal of Natural Fibers 19 (12):1–13. doi:10.1080/15440478.2020.1867942.
  • Kabir, M. M., H. Wang, K. T. Lau, and F. Cardona. 2013. Tensile properties of chemically treated hemp fibers as reinforcement for composites. Composites Part B: Engineering 53:362–68. doi:10.1016/j.compositesb.2013.05.048.
  • Kadam, A. A., S. Singh, and K. K. Gaikwad. 2021. Chitosan based antioxidant films incorporated with pine needles (Cedrus deodara) extract for active food packaging applications. Food Control 124:107877. doi:10.1016/j.foodcont.2021.107877.
  • Kala, L. D., and P. M. V. Subbarao. 2018. Estimation of pine needle availability in the central Himalayan state of Uttarakhand, India for use as energy feedstock. Renewable Energy 128:9–19. doi:10.1016/j.renene.2018.05.054.
  • Kambli, N., S. Basak, K. K. Samanta, and R. R. Deshmukh. 2016. Extraction of natural cellulosic fibers from cornhusk and its physico-chemical properties. Fibers and Polymers 17 (5):687–94. doi:10.1007/s12221-016-5416-0.
  • Kathiresan, M., P. Pandiarajan, P. Senthamaraikannan, and S. S. Saravanakumar. 2016. Physicochemical properties of new cellulosic Artisdita hystrix leaf fiber. International Journal of Polymer Analysis and Characterization 21 (8):663–68. doi:10.1080/1023666X.2016.1194636.
  • Krishna, M. G., C. Kailasanathan, and B. NagarajaGanesh. 2020. Physico-chemical and morphological characterisation of cellulose fibers extracted from Sansevieria roxburghiana Schult & Schult. f leaves. Journal of Natural Fibers 19:1–17.
  • Kulandaivel, N., R. Muralikannan, and S. Kalyana Sundaram. 2018. Extraction and characterisation of novel natural cellulosic fibers from pigeon pea plant. Journal of Natural Fibers 17 (5):769–79. doi:10.1080/15440478.2018.1534184.
  • Kumar, N., J. S. Grewal, N. Kumar, S. Kumar, and S. Ali. 2022. A novel Pinus roxburghii natural leaves fiber used as reinforcement polymer composite: As asbestos‐free brake friction material. Polymer Composites 43 (1):566–73. doi:10.1002/pc.26399.
  • Lee, C. H., A. Khalina, S. H. Lee, and M. Liu. 2020. A comprehensive review on bast fibre retting process for optimal performance in fibre-reinforced polymer composites. Advances in Materials Science and Engineering 2020:1–27. doi:10.1155/2020/6074063.
  • Madhu, P., M. R. Sanjay, S. Pradeep, K. S. Bhat, B. Yogesha, and S. Siengchin. 2019. Characterisation of cellulosic fibre from Phoenix pusilla leaves as potential reinforcement for polymeric composites. Journal of Materials Research and Technology 8 (3):2597–604. doi:10.1016/j.jmrt.2019.03.006.
  • Manimaran, P., M. R. Sanjay, P. Senthamaraikannan, M. Jawaid, S. S. Saravanakumar, and R. George. 2018. Synthesis and characterisation of cellulosic fiber from red banana peduncle as reinforcement for potential applications. Journal of Natural Fibers 16 (5):768–80. doi:10.1080/15440478.2018.1434851.
  • Manimaran, P., S. S. Saravanakumar, N. K. Mithun, and P. Senthamaraikannan. 2016. Physicochemical properties of new cellulosic fibers from the bark of Acacia arabica. International Journal of Polymer Analysis and Characterization 21 (6):548–53. doi:10.1080/1023666X.2016.1177699.
  • Md, J. S., S. Madhu, K. S. Chakravarthy, and J. S. N. Raju. 2020. Characterization of natural cellulose fibers from the stem of Albizia Julibrissin as reinforcement for polymer composites. Journal of Natural Fibers 19 (6):2204–17. doi:10.1080/15440478.2020.1807440.
  • Moshi, A. A. M., D. Ravindran, S. R. S. Bharathi, S. Indran, S. S. Saravanakumar, and Y. Liu. 2020. Characterisation of a new cellulosic natural fiber extracted from the root of Ficus religiosa tree. International Journal of Biological Macromolecules 142:212–21. doi:10.1016/j.ijbiomac.2019.09.094.
  • Nagaraja, G. B., P. Ganeshan, P. Ramshankar, and K. Raja. 2019. Assessment of natural cellulosic fibers derived from Senna auriculata for making light weight industrial biocomposites. Industrial Crops and Products 139:111546. doi:10.1016/j.indcrop.2019.111546.
  • Palai, B. K., S. K. Sarangi, and S. S. Mohapatra. 2021. Investigation of physiochemical and thermal properties of eichhornia crassipes fibers. Journal of Natural Fibers 18 (9):1320–31. doi:10.1080/15440478.2019.1691110.
  • Pickering, K. L., M. A. Efendy, and T. M. Le. 2016. A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A, Applied Science and Manufacturing 83:98–112. doi:10.1016/j.compositesa.2015.08.038.
  • Porras, A., A. Maranon, and I. A. Ashcroft. 2015. Characterisation of a novel natural cellulose fabric from Manicaria saccifera palm as possible reinforcement of composite materials. Composites Part B: Engineering 74:66–73. doi:10.1016/j.compositesb.2014.12.033.
  • Radzuan, M. N. A., N. F. Ismail, M. K. F. M. Radzi, Z. B. Razak, I. B. Tharizi, A. B. Sulong, C. H. C. Haron, and N. Muhamad. 2019. Kenaf composites for automotive components: Enhancement in machinability and moldability. Polymers 11 (10):1707. doi:10.3390/polym11101707.
  • Raja, S., R. Rajesh, S. Indran, D. Divya, and G. S. Priyadharshini. 2021. Characterization of industrial discarded novel Cymbopogon flexuosus stem fiber: A potential replacement for synthetic fiber. Journal of Industrial Textiles 51 (1_suppl):1207S–34S. doi:10.1177/15280837211007507.
  • Ramesh, M. 2018. Hemp, jute, banana, kenaf, ramie, sisal fibers. In Handbook of properties of textile and technical fibres, 301–25. Woodhead Publishing. doi:10.1016/B978-0-08-101272-7.00009-2.
  • Ranakoti, L., P. K. Rakesh, and B. Gangil. 2021. Effect of Tasar silk waste on the mechanical properties of Jute/Grewia optiva fibers reinforced epoxy laminates. Journal of Natural Fibers 19 (15):10462–74. doi:10.1080/15440478.2021.1994089.
  • Rao, K. M. M., A. V. R. Prasad, M. N. V. R. Babu, K. M. Rao, and A. V. S. S. K. S. Gupta. 2007. Tensile properties of elephant grass fiber reinforced polyester composites. Journal of Materials Science 42 (9):3266–72. doi:10.1007/s10853-006-0657-8.
  • Saravanakumar, S. S., A. Kumaravel, T. Nagarajan, and I. G. Moorthy. 2014. Effect of chemical treatments on physicochemical properties of Prosopis juliflora fibers. International Journal of Polymer Analysis and Characterization 19 (5):383–90. doi:10.1080/1023666X.2014.903585.
  • Segal, L., J. J. Creely, A. E. Martin, and C. M. Conrad. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Textile Research Journal 29 (10):786–94. doi:10.1177/004051755902901003.
  • Shanmugasundaram, N., and I. Rajendran. 2016. Characterisation of raw and alkali-treated mulberry fibers as potential reinforcement in polymer composites. Journal of Reinforced Plastics and Composites 35 (7):601–14. doi:10.1177/0731684415625822.
  • Shanmugasundaram, N., I. Rajendran, and T. Ramkumar. 2018. Characterisation of untreated and alkali treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in polymer composites. Carbohydrate Polymer 195:566–75. doi:10.1016/j.carbpol.2018.04.127.
  • Singha, A. S., and V. K. Thakur. 2008. Synthesis and characterization of pine needles reinforced RF matrix based biocomposites. E-Journal of Chemistry 5 (S1):1055–62. doi:10.1155/2008/395827.
  • Tahir, P. M., A. B. Ahmed, S. O. A. Saiful Azry, and Z. Ahmed. 2011. Retting process of some bast plant fibers and its effect on fiber quality: A review. Bio Resources 6 (4):5260–81.
  • Thakur, V. K., A. S. Singha, and M. K. Thakur. 2013. Fabrication and physico-chemical properties of high-performance pine needles/green polymer composites. International Journal of Polymeric Materials and Polymeric Biomaterials 62 (4):226–30. doi:10.1080/00914037.2011.641694.
  • Vijay, R., D. L. Singaravelu, A. Vinod, M. R. Sanjay, S. Siengchin, M. Jawaid, A. Khan, and J. Parameswaranpillai. 2019. Characterisation of raw and alkali treated new natural cellulosic fibers from Tridax procumbens. International Journal of Biological Macromolecules 125:99–108. doi:10.1016/j.ijbiomac.2018.12.056.
  • Vinod, A., R. Vijay, D. L. Singaravelu, M. R. Sanjay, S. Siengchin, Y. Yagnaraj, and S. Khan. 2021. Extraction and characterisation of natural fiber from stem of cardiospermum halicababum. Journal of Natural Fibers 18 (6):898–908. doi:10.1080/15440478.2019.1669514.