21,716
Views
11
CrossRef citations to date
0
Altmetric
Review

Banana pseudostem fiber: A critical review on fiber extraction, characterization, and surface modification

, &

References

  • Ahmad, T., and M. Danish. 2018. Prospects of banana waste utilization in wastewater treatment: A review. Journal of environmental management 206:330–15. doi:10.1016/j.jenvman.2017.10.061.
  • Alavudeen, A., N. Rajini, S. Karthikeyan, M. Thiruchitrambalam, and N. Venkateshwaren.2015.Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation.Materials & Design.66:246–57.10.1016/j:matdes.
  • Badrinath, R., and T. Senthilvelan. 2014. Comparative investigation on mechanical properties of banana and sisal reinforced polymer based composites. Procedia Materials Science 5:2263–72. doi:10.1016/j.mspro.2014.07.444.
  • Bar, M., H. Belay, A. Ramasamy, A. Das, and P. Ouagne. 2021. Refining of banana fiber for load bearing application through emulsion treatment and its comparison with other traditional methods. Journal of Natural Fibers 19:1–18. doi:10.1080/15440478.2021.1902901.
  • Basak, S., S. Saxena, S. K. Chattopadhyay, R. Narkar, and R. Mahangade. 2016. Banana pseudostem sap: A waste plant resource for making thermally stable cellulosic substrate. Journal of Industrial Textiles 46 (4):1003–23. doi:10.1177/1528083715591580.
  • Basu, G., L. Mishra, S. Jose, and A. K. Samanta. 2015. Accelerated retting cum softening of coconut fibre. Industrial Crops and Products 77:66–73. doi:10.1016/j.indcrop.2015.08.012.
  • Basu, G., A. N. Roy, K. K. Satapathy, S. M. J. Abbas, L. Mishra, and R. Chakraborty. 2012. Potentiality for value-added technical use of Indian sisal. Industrial Crops and Products 36 (1):33–40. doi:10.1016/j.indcrop.2011.08.001.
  • Benedetto, R. M. D., M. V. Gelfuso, and D. Thomazini. 2015. Influence of UV radiation on the physical-chemical and mechanical properties of banana fiber. Materials Research 18 (2):265–72. doi:10.1590/1516-1439.371414.
  • Benítez, A. N., M. D. Monzón, I. Angulo, Z. Ortega, P. M. Hernández, and M. D. Marrero. 2013. Treatment of banana fiber for use in the reinforcement of polymeric matrices. Measurement 46 (3):1065–73. doi:10.1016/j.measurement.2012.11.021.
  • Bhatnagar, R., G. Gupta, and S. Yadav. 2015. A review on composition and properties of banana fibers. International Journal of Scientific & Engineering 6 (5):49–52.
  • Binoj, J. S., R. E. Raj, and B. S. S. Daniel. 2017. Comprehensive characterization of industrially discarded fruit fiber, Tamarindus indica L. as a potential eco-friendly bio-reinforcement for polymer composite. Journal of Cleaner Production 142:1321–31. doi:10.1016/j.jclepro.2016.09.179.
  • Biswal, M., S. Mohanty, and S. K. Nayak. 2011. Mechanical, thermal and dynamic-mechanical behavior of banana fiber reinforced polypropylene nanocomposites. Polymer Composites 32 (8):1190–201. doi:10.1002/pc.21138.
  • Chanakya, H. N., and M. Sreesha. 2012. Anaerobic retting of banana and arecanut wastes in a plug flow digester for recovery of fiber, biogas and compost. Energy for Sustainable Development 16 (2):231–35. doi:10.1016/j.esd.2012.01.003.
  • Chokshi, S., V. Parmar, P. Gohil, and V. Chaudhary. 2022. Chemical composition and mechanical properties of natural fibers. Journal of Natural Fibers 19 (10):3942–53. doi:10.1080/15440478.2020.1848738.
  • Evans, E. A., F. H. Ballen, and M. Siddiq. 2020. Banana production, global trade, consumption trends, postharvest handling, and processing. In Handbook of banana production, postharvest science, processing technology, and nutrition, ed. G. Siddiq Jasim Ahmed and L. M. Gloria, 1–18.
  • Gañán, P., J. Cruz, S. Garbizu, A. Arbelaiz, and I. Mondragon. 2004. Stem and bunch banana fibers from cultivation wastes: Effect of treatments on physico-chemical behavior. Journal of Applied Polymer Science 94 (4):1489–95. doi:10.1002/app.21061.
  • Gassan, J., A. Chate, and A. K. Bledzki. 2001. Calculation of elastic properties of natural fibers. Journal of Materials Science 36 (15):3715–20. doi:10.1023/A:1017969615925.
  • Geethamma, V. G., R. Joseph, and S. Thomas. 1995. Short coir fiber-reinforced natural rubber composites: Effects of fiber length, orientation, and alkali treatment. Journal of Applied Polymer Science 55 (4):583–94. doi:10.1002/app.1995.070550405.
  • Ghosh, P., A. K. Samanta, and G. Basu. 2004. Effect of selective chemical treatments of jute fibre aimed at improved textile related properties and processibility. Indian Journal of Fibre and Textile Research 29 (3):85–99.
  • Guimarães, J. L., E. Frollini, C. G. Da Silva, F. Wypych, and K. G. Satyanarayana. 2009. Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. Industrial Crops and Products 30 (3):407–15. doi:10.1016/j.indcrop.2009.07.013.
  • Gupta, U. S., M. Dhamarikar, A. Dharkar, S. Chaturvedi, A. Kumrawat, N. Giri, S. Tiwari, and R. Namdeo. 2021. Plasma modification of natural fiber: A review. Materials Today: Proceedings 43:451–57. doi:10.1016/j.matpr.2020.11.973.
  • Gupta, U. S., S. Tiwari, U. Sharma, and K. Viliya. 2022. Cold glow discharge nitrogen plasma pretreatment of banana fibre for improving the mechanical characterisation of banana/epoxy composites. Journal of the Institution of Engineers D:1–13. doi:10.1007/s40033-022-00356-8.
  • Hazarika, D., N. Gogoi, S. Jose, R. Das, and G. Basu. 2017. Exploration of future prospects of Indian pineapple leaf, an agro waste for textile application. Journal of Cleaner Production 141:580–86. doi:10.1016/j.jclepro.2016.09.092.
  • Hrabě, P., M. Müller, and Č. Mizera. 2016. The effect of plasma treatment on tensile strength of enseteventricosum fibres. Manufacturing Technology 16 (5):928–33. doi:10.21062/ujep/x.2016/a/1213-2489/MT/16/5/928.
  • Huang, J., and C. Yu. 2019. Determination of cellulose, hemicellulose and lignin content using near-infrared spectroscopy in flax fiber. Textile Research Journal 89 (23–24):4875–4883. doi:10.1177/0040517519843464.
  • Jacob, N., K. N. Niladevi, G. S. Anisha, and P. Prema. 2008. Hydrolysis of pectin: An enzymatic approach and its application in banana fiber processing. Microbiology Research 163 (5):538–44. doi:10.1016/j.micres.2006.07.016.
  • Jagadeesh, P., M. Puttegowda, S. Mavinkere Rangappa, and S. Siengchin. 2021. A review on extraction, chemical treatment, characterization of natural fibers and its composites for potential applications. Polymer Composites 42 (12):6239–64. doi:10.1002/pc.26312.
  • Jandas, P. J., S. Mohanty, S. K. Nayak, and H. Srivastava. 2011. Effect of surface treatments of banana fiber on mechanical, thermal, and biodegradability properties of PLA/banana fiber biocomposites. Polymer Composites 32 (11):1689–700. doi:10.1002/pc.21165.
  • Jannah, M., M. Mariatti, A. Abu Bakar, and H. P. S. Abdul Khalil. 2009. Effect of chemical surface modifications on the properties of woven banana-reinforced unsaturated polyester composites. Journal of Reinforced Plastic Composites 28 (12):1519–32. doi:10.1177/0731684408090366.
  • Jayaprabha, J. S., M. Brahmakumar, and V. B. Manilal. 2011. Banana pseudostem characterization and its fiber property evaluation on physical and bioextraction. Journal of Natural Fibers 8 (3):149–60. doi:10.1080/15440478.2011.601614.
  • Jose, S., L. Mishra, G. Basu, and A. K. Samanta. 2017. Study on reuse of coconut fiber chemical retting bath. Part II—Recovery and characterization of lignin. Journal of Natural Fibers 14 (4):510–18. doi:10.1080/15440478.2016.1212772.
  • Jose, S., L. Mishra, S. Debnath, S. Pal, P. K. Munda, and G. Basu. 2019. Improvement of water quality of remnant from chemical retting of coconut fibre through electrocoagulation and activated carbon treatment. Journal of Cleaner Production 210:630–37. doi:10.1016/j.jclepro.2018.11011.
  • Jose, S., R. Salim, and L. Ammayappan. 2016. An overview on production, properties, and value addition of pineapple leaf fibers (PALF). Journal of Natural Fibers 13 (3):362–73. doi:10.1080/15440478.2015.1029194.
  • Jústiz-Smith, N. G., G. J. Virgo, and V. E. Buchanan. 2008. Potential of Jamaican banana, coconut coir and bagasse fibres as composite materials. Materials Characterization 59 (9):1273–78. doi:10.1016/j.matchar.2007.10.011.
  • Kalita, H., A. Hazarika, R. Kandimalla, S. Kalita, and R. Devi. 2018. Development of banana (Musa balbisiana) pseudostem fiber as a surgical bio-tool to avert post-operative wound infections. RSC advances 8 (64):36791–801. doi:10.1039/C8RA04470H.
  • Kalita, B. B., S. Jose, S. Baruah, S. Kalita, and S. R. Saikia. 2019. Hibiscus sabdariffa (Roselle): A potential source of bast fiber. Journal of Natural Fibers 16 (1):49–57. doi:10.1080/15440478.2017.1401504.
  • Kannan, G., and R. Thangaraju. 2022. Effect of industrial waste fly ash on the drilling characteristics of banana fiber residue reinforced polymer composites. Journal of Industrial Textiles 15280837221102641. doi:10.1177/15280837221102.
  • Kathirselvam, M., A. Kumaravel, V. P. Arthanarieswaran, and S. S. Saravanakumar. 2019. Isolation and characterization of cellulose fibers from Thespesia populnea barks: A study on physicochemical and structural properties. International Journal of Biological Macromolecules 129:396–406. doi:10.1016/j.ijbiomac.2019.02.044.
  • Khan, A., R. Vijay, D. L. Singaravelu, M. R. Sanjay, S. Siengchin, M. Jawaid, K. A. Alamry, and A. M. Asiri. 2022. Extraction and characterization of natural fibers from Citrullus lanatus climber. Journal of Natural Fibers 19 (2):621–29. doi:10.1080/15440478.2020.1758281.
  • Khan, A., R. Vijay, D. L. Singaravelu, M. R. Sanjay, S. Siengchin, F. Verpoort, K. A. Alamry, and A. M. Asiri. 2021a. Characterization of natural fibers from Cortaderia selloana grass (pampas) as reinforcement material for the production of the composites. Journal of Natural Fibers 18 (11):1893–901. doi:10.1080/15440478.2019.1709110.
  • Khan, A., R. Vijay, D. L. Singaravelu, M. R. Sanjay, S. Siengchin, F. Verpoort, K. A. Alamry, and A. M. Asiri. 2021b. Extraction and characterization of natural fiber from Eleusine indica grass as reinforcement of sustainable fiber reinforced polymer composites. Journal of Natural Fibers 18 (11):1742–50. doi:10.1080/15440478.2019.1697993.
  • Kiruthika, A. V., and K. Veluraja. 2009. Experimental studies on the physico-chemical properties of banana fibre from various varieties. Fibers and Polymers 10 (2):193–99. doi:10.1007/s12221-009-0193-7.
  • Kulkarni, A. G., K. G. Satyanarayana, P. K. Rohatgi, and K. Vijayan. 1983. Mechanical properties of banana fibres (Musa sepientum). Journal of Materials Science 18 (8):2290–96. doi:10.1007/bf00541832.
  • Kumar, R., S. Sivaganesan, P. Senthamaraikannan, S. S. Saravanakumar, A. Khan, S. Ajith Arul Daniel, and L. Loganathan. 2022. Characterization of new cellulosic fiber from the bark of Acacia nilotica L. plant. Journal of Natural Fibers 19 (1):199–208. doi:10.1080/15440478.2020.1738305.
  • Li, X., L. G. Tabil, and S. Panigrahi. 2007. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymers and the Environment 15 (1):25–33. doi:10.1007/s10924-006-0042-3.
  • Liu, Y., D. Thibodeaux, G. Gamble, P. Bauer, and D. VanDerveer. 2012. Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity. Applied spectroscopy 66 (8):983–86. doi:10.1366/12-06611.
  • Lü, J., C. Long, J. Zhao, L. Ma, H. Lü, J. Liu, and H. He. 2013. Design and experiment of transverse-feeding ramie decorticator. Transactions of the Chinese Society of Agricultural Engineering 29 (16):16–21.
  • Madhushani, W. H., R. W. I. B. Priyadarshana, S. R. W. M. C. J. K. Ranawana, K. G. C. Senarathna, and P. E. Kaliyadasa. 2021. Determining the crystallinity index of cellulose in chemically and mechanically extracted banana fiber for the synthesis of nanocellulose. Journal of Natural Fibers 19:1–9. doi:10.1080/15440478.2021.1958428.
  • Majhi, S. K., S. K. Nayak, S. Mohanty, and L. Unnikrishnan. 2010. Mechanical and fracture behavior of banana fiber reinforced Polylactic acid biocomposites. International Journal of Plastics Technology 14 (1):57–75. doi:10.1007/s12588-010-0010-6.
  • Mishra, S., A. K. Mohanty, L. T. Drzal, M. Misra, and G. Hinrichsen. 2004. A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromolecular Materials and Engineering 289 (11):955–74. doi:10.1002/mame.200400132.
  • Muensri, P., T. Kunanopparat, P. Menut, and S. Siriwattanayotin. 2011. Effect of lignin removal on the properties of coconut coir fiber/wheat gluten biocomposite. Composites. Part A, Applied Science and Manufacturing 42 (2):173–79. doi:10.1016/j.compositesa.2010.11.002.
  • Mukherjee, P. S., and K. G. Satyanarayana. 1984. Structure and properties of some vegetable fibres. Journal of Materials Science 19 (12):3925–34. doi:10.1007/BF00980755.
  • Mumthas, A. C. S. I., G. L. D. Wickramasinghe, and U. S. Gunasekera. 2019. Effect of physical, chemical and biological extraction methods on the physical behaviour of banana pseudo-stem fibres: Based on fibres extracted from five common Sri Lankan cultivars. Journal of Engineered Fibers and Fabrics 14. 1558925019865697. doi:10.1177/1558925019865697.
  • Neelamana, I. K., S. Thomas, and J. Parameswaranpillai. 2013. Characteristics of banana fibers and banana fiber reinforced phenol formaldehyde composites-macroscale to nanoscale. Journal of Applied Polymer Science 130 (2):1239–46. doi:10.1002/app.39220.
  • Oliveira, F. R., L. Erkens, R. Fangueiro, and A. P. Souto. 2012. Surface modification of banana fibers by DBD plasma treatment. Plasma Chemistry and Plasma Processing 32 (2):259–73. doi:10.1007/s11090-012-9354-3.
  • Ortega, Z., M. Morón, M. D. Monzón, P. Badalló, and R. Paz. 2016. Production of banana fiber yarns for technical textile reinforced composites. Materials 9 (5):370–79. doi:10.3390/ma9050370.
  • Pandey, R., S. Jose, G. Basu, and M. K. Sinha. 2021. Novel methods of degumming and bleaching of Indian flax variety Tiara. Journal of Natural Fibers 18 (8):1140–50. doi:10.1080/15440478.2019.1687067.
  • Pandey, R., S. Jose, and M. K. Sinha. 2020. Fibre extraction and characterisation from typha domingensis. Journal of Natural Fibers 1–11. 1821285. doi:10.1080/15440478.2020.
  • Paramasivam, S. K., D. Panneerselvam, D. Sundaram, K. N. Shiva, and U. Subbaraya. 2020. Extraction, characterization and enzymatic degumming of banana fiber. Journal of Natural Fibers 19:1–10. doi:10.1080/15440478.2020.1764456.
  • Paul, S. A., A. Boudenne, L. Ibos, Y. Candau, K. Joseph, and S. Thomas. 2008. Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials. Composites Part A, Applied Science and Manufacturing 39 (9):1582–88. doi:10.1016/j.compositesa.2008.06.004.
  • Pokharel, A., K. J. Falua, A. Babaei-Ghazvini, and B. Acharya. 2022. Biobased polymer composites: A review. Journal of Composites Science 6 (9):255. doi:10.3390/jcs6090255.
  • Pothan, L. A., J. George, and S. Thomas. 2002. Effect of fiber surface treatments on the fiber–matrix interaction in banana fiber reinforced polyester composites. Composite Interfaces 9 (4):335–53. doi:10.1163/156855402760194692.
  • Pothan, L. A., Z. Oommen, and S. Thomas. 2003. Dynamic mechanical analysis of banana fiber reinforced polyester composites. Composites Science and Technology 63 (2):283–93. doi:10.1016/s0266-3538(02)00254-3.
  • Premalatha, N., S. S. Saravanakumar, M. R. Sanjay, S. Siengchin, and A. Khan. 2021. Structural and thermal properties of chemically modified luffa cylindrica fibers. Journal of Natural Fibers 18 (7):1038–44. doi:10.1080/15440478.2019.1678546.
  • Rahman, M., S. T. Nipa, S. Z. Rima, M. Hasan, R. Saha, M. Halim, Y. Ali, and A. Deb. 2022. Pseudo-stem banana fiber as a potential low-cost adsorbent to remove methylene blue from synthetic wastewater. Applied Water Science 12 (10):1–16. doi:10.1007/s13201-022-01769-2.
  • Ramesh, M., R. Logesh, M. Manikandan, N. S. Kumar, and D. V. Pratap. 2017. Mechanical and water intake properties of banana-carbon hybrid fiber reinforced polymer composites. Materials Research 20:365–76. doi:10.1590/1980-5373-mr-2016-0760.
  • Rana, P., and S. Chopra. 2021. Extraction and characterization of inherently antimicrobial fibres from aerial roots of banyan tree. Journal of Natural Fibers 19:1–18. doi:10.1080/15440478.2021.1905586.
  • Rodríguez, L. J., M. L. Álvarez-láinez, and C. E. Orrego. 2022. Optimization of processing conditions and mechanical properties of banana fiber-reinforced polylactic acid/high-density polyethylene biocomposites. Journal of Applied Polymer Science 139 (3):51501. doi:10.1002/app.51501.
  • Sarma, I., and A. C. Deka. 2016. Banana fibre extraction by mycogenic pectinase enzyme (S)-an eco-friendly approach. Imperial Journal of Interdisciplinary Research 2 (10):997–1006.
  • Singh, G., S. Jose, D. Kaur, and B. Soun. 2020. Extraction and characterization of corn leaf fiber. Journal of Natural Fibers 1–11. doi:10.1080/15440478.2020.1787914.
  • Siva, R., T. N. Valarmathi, K. Palanikumar, and A. V. Samrot. 2020. Study on a novel natural cellulosic fiber from Kigelia africana fruit: Characterization and analysis. Carbohydrate Polymers 244:116494. doi:10.1016/j.carbpol.2020.116494.
  • Siva, R., T. N. Valarmathi, A. V. Samrot, and J. J. Jeevahan. 2021. Surface-modified and untreated Cissus quadrangularis reinforced polylactic composite. Current Research in Green and Sustainable Chemistry 4:100121. doi:10.1016/j.crgsc.2021.100121.
  • Siva, R., T. N. Valarmathi, B. Siddardha, K. Sanjana, and B. Dakshin. 2019. Processing and evaluation of mechanical properties of sisal and bamboo chemically treated hybrid composite. In Innovative design, analysis and development practices in aerospace and automotive engineering, ed. U. Chandrasekhar, L. J. Yang, and S. Gowthaman, 435–41. Singapore: Springer.
  • Song, Y., W. Jiang, K. Nie, Y. Zhang, H. Ben, G. Han, and A. J. Ragauskas. 2019. An alkali-free method to manufacture ramie fiber. Textile Research Journal 89 (17):3653–59. doi:10.1177/0040517518811946.
  • Subagyo, A., and A. Chafidz. 2018. Banana pseudo-stem fiber: Preparation, characteristics, and applications. In Banana nutrition-function and processing kinetics, ed. I. O. J. Afam and T. A. Anyasi, 47–65. Intech Open. doi: 10.5772/intechopen.82204.
  • Sumesh, K. R., V. Kavimani, G. Rajeshkumar, S. Indran, and A. Khan. 2022. Mechanical, water absorption and wear characteristics of novel polymeric composites: Impact of hybrid natural fibers and oil cake filler addition. Journal of Industrial Textiles 51 (4):5910S–37. doi:10.1177/1528083720971344.
  • Taer, E., D. A. Yusra, A. Amri, A. Taslim, R. Putri. 2021. The synthesis of activated carbon made from banana stem fibers as the supercapacitor electrodes. Materials Today: Proceedings 44:3346–49. doi:10.1016/j.matpr.2020.11.645.
  • Teli, M. D., and S. P. Valia. 2013. Acetylation of banana fibre to improve oil absorbency. Carbohydrate Polymers 92 (1):328–33. doi:10.1016/j.carbpol.2012.09.019.
  • Twebaze, C., M. Zhang, X. Zhuang, M. Kimani, G. Zheng, and Z. Wang. 2022. Banana fiber degumming by alkali treatment and ultrasonic methods. Journal of Natural Fibers 19:1–13. doi:10.1080/15440478.2022.2079581.
  • Udaya Kiran, C., G. Ramachandra Reddy, B. M. Dabade, and S. Rajesham. 2007. Tensile properties of sun hemp, banana and sisal fiber reinforced polyester composites. Journal of Reinforced Plastics and Composites 26 (10):1043–50. doi:10.1177/0731684407079423.
  • Uma, S., M. S. Saraswathi, and P. Durai. 2019. Banana genetic resources. In Conservation and utilization of horticultural genetic resources, ed. P. Rajasekharan and V. Rao, 321–61. Singapore: Springer. doi:10.1007/978-981-13-3669-0_10.
  • Vajpayee, M., M. Singh, L. Ledwani, R. Prakash, and S. K. Nema. 2020. Investigation of antimicrobial activity of DBD air plasma-treated banana fabric coated with natural leaf extracts. ACS Omega 5 (30):19034–49. doi:10.1021/acsomega.0c02380.
  • Venkateshwaran, N., and A. Elayaperumal. 2010. Banana fiber reinforced polymer composites-a review. Journal of Reinforced Plastics and Composites 29 (15):2387–96. doi:10.1177/0731684409360578.
  • Vigneswaran, C., V. Pavithra, V. Gayathri, and K. Mythili. 2015. Banana fiber: Scope and value added product development. Journal of Textile and Apparel, Technology and Management 9 (2):1–7.
  • Vishnu Vardhini, K. J., and R. Murugan. 2017. Effect of laccase and xylanase enzyme treatment on chemical and mechanical properties of banana fiber. Journal of Natural Fibers 14 (2):217–27. doi:10.1080/15440478.2016.1193086.
  • Zaman, H. U., M. A. Khan, and R. A. Khan. 2011. Physico-mechanical and degradation properties of banana fiber/LDPE composites: Effect of acrylic monomer and starch. Composite Interfaces 18 (8):685–700. doi:10.1163/156855412x626261.