857
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Impact of wet-drying Treatment of Raffia and Okra Fibres on Their Morphological, Physicochemical and Mechanical Properties

, , , , , & ORCID Icon show all

References

  • Ackermann, C., L. Gottsching, and H. Pakarinen. 2000. Papermaking potential of recycled fiber. Recycled Fiber and Deinking 7:359–15.
  • Akinwande, A. A., A. A. Adediran, O. A. Balogun, O. S. Olusoju, and O. S. Adesina. 2021. Influence of Alkaline modification on selected properties of banana fiber paperbricks. Scientific Reports 11 (1):1–18. doi:10.1038/s41598-021-85106-8.
  • Akinwande, A. A., A. Adesoji Adediran, A. Balogun, O. Seun Adesina, O. Samuel Olasoju, A. Felix Owa, T. John Erinle, and E. Titilayo Akinlabi. 2021. Assessment of Alkaline treatment of palm Kernel fiber and curing duration on selected properties of cement-paper composite boards assessment of Alkaline treatment of palm Kernel fiber and curing duration on selected properties of cement-paper composite bo. Cogent Engineering 8:1. doi:10.1080/23311916.2021.1909690.
  • Amaral, L. M. D., C. de Souza Rodrigues, and F. Spitale Jacques Poggiali. 2022. Hornification on vegetable fibers to improve fiber-cement composites: A critical review. Journal of Building Engineering 48 (December 2021):103947. doi:10.1016/j.jobe.2021.103947.
  • Ballesteros, J. E. M., V. dos Santos, G. Mármol, M. Frías, and J. Fiorelli. 2017. Potential of the hornification treatment on eucalyptus and pine fibers for fiber-cement applications. Cellulose. 24(5):2275–86. doi:10.1007/s10570-017-1253-6.
  • Ballesteros, J. E. M., S. Francisco Santos, G. Mármol, H. Savastano, and J. Fiorelli. 2015. Evaluation of cellulosic pulps treated by hornification as reinforcement of cementitious composites. Construction and Building Materials 100:83–90. doi:10.1016/j.conbuildmat.2015.09.044.
  • Ballesteros, J. E. M., G. Mármol, R. Filomeno, L. Rodier, H. Savastano, and J. Fiorelli. 2019. Synergic effect of fiber and matrix treatments for vegetable fiber reinforced cement of improved performance. Construction and Building Materials 205:52–60. doi:10.1016/j.conbuildmat.2019.02.007.
  • Belouadah, Z., A. Ati, and M. Rokbi. 2015. Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohydrate Polymers 134:429–37.
  • Cai, M., H. Takagi, A. N. Nakagaito, M. Katoh, T. Ueki, G. I. N. N. Waterhouse, and L. Yan. 2015. Influence of Alkali treatment on internal microstructure and tensile properties of Abaca fibers. Industrial Crops and Products 65:27–35. doi:10.1016/j.indcrop.2014.11.048.
  • Claramunt, J., M. Ardanuy, J. Antonio García-Hortal, and R. Dias Tolêdo Filho. 2011. The hornification of vegetable fibers to improve the durability of cement mortar composites. Cement and Concrete Composites 33 (5):586–95. doi:10.1016/j.cemconcomp.2011.03.003.
  • Claramunt, J., M. Ardanuy, and J. A. García-Hortal. 2010. Effect of drying and rewetting cycles on the structure and physicochemical characteristics of softwood fibres for reinforcement of cementitious composites. Carbohydrate Polymers 79 (1):200–05. doi:10.1016/j.carbpol.2009.07.057.
  • Coradini, S., G. Cid, D. Carlos, T. Cardoso, and F. De Andrade. 2020. Influence of hornification on the physical and flexural properties of moso bamboo. Construction and Building Materials 248:118701. doi:10.1016/j.conbuildmat.2020.118701.
  • Correia, V. D. C., V. dos Santos, M. Sain, S. Francisco Santos, A. Lopes Leão, and H. Savastano Junior. 2016. Grinding process for the production of nanofibrillated cellulose based on unbleached and bleached bamboo organosolv pulp. Cellulose 23 (5):2971–87. doi:10.1007/s10570-016-0996-9.
  • Das, S., G. Nandi, and L. K. Ghosh. 2019. Okra and its various applications in drug delivery, food technology, health care and pharmacological aspects-a review. Journal of Pharmaceutical Sciences and Research 11 (6):2139–47.
  • Defroirdt, N., S. Biswas, L. De Vriese, J. Van Acker, Q. Ahsan, L. Gorbatikh, A. VanVuure, and I. Verpoest. 2010. Assessment of thetensile properties of coir, bamboo and jute fibre. Composite Part a. Applied Science and Manufacturing 41 (5):588–95.
  • De Rosa, I. M., J. M. Kenny, M. Maniruzzaman, M. Moniruzzaman, M. Monti, D. Puglia, C. Santulli, and F. Sarasini. 2011. Effect of chemical treatments on the mechanical and thermal behaviour of Okra (Abelmoschus Esculentus) Fibres. Composites Science and Technology 71 (2):246–54. doi:10.1016/j.compscitech.2010.11.023.
  • De Rosa, I. M., J. Maria Kenny, D. Puglia, C. Santulli, and F. Sarasini. 2010. Morphological, thermal and mechanical characterization of okra (abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Composites Science and Technology 70 (1):116–22. doi:10.1016/j.compscitech.2009.09.013.
  • Djoumessi, A. K., R. Nicodème Sikame Tagne, T. Tiwa Stanislas, F. Ngapgue, and E. Njeugna. 2022. Optimization of the young’s modulus of woven composite material made by Raphia Vinifiera fiber/epoxy. International Journal for Simulation and Multidisciplinary Design Optimization 13:21. doi:10.1051/smdo/2022014.
  • Elenga, R. G., G. F. Dirras, J. Goma Maniongui, P. Djemia, and M. P. Biget. 2009. On the microstructure and physical properties of untreated Raffia textilis fiber. Composites Part A, Applied Science and Manufacturing 40 (4):418–22. doi:10.1016/j.compositesa.2009.01.001.
  • FAOSTAT. 2020. “Production Quantities of Okra by Country.” https://www.fao.org/faostat/en/#data/QCL/visualize.
  • Fernandes Diniz, J. M. B., M. H. Gil, and J. A. A. M. Castro. 2004. Hornification - its origin and interpretation in wood pulps. Wood Science and Technology 37 (6):489–94. doi:10.1007/s00226-003-0216-2.
  • Ferreira, S. R., F. De Andrade Silva, P. Roberto Lopes Lima, and R. Dias Toledo Filho. 2015a. Effect of fiber treatments on the sisal fiber properties and fiber-matrix bond in cement based systems. Construction and Building Materials 101:730–40. doi:10.1016/j.conbuildmat.2015.10.120.
  • Ferreira, S. R., F. de Andrade Silva, P. Roberto Lopes Lima, and R. Dias Toledo Filho. 2015b. Effect of Natural Fiber Hornification on the Fiber Matrix Interface in Cement Based Composite Systems. Key Engineering Materials 668:118–25. doi:10.4028/scientific.net/kem.668.118.
  • Ferreira, S. R., P. R. L. Lima, F. A. Silva, and R. D. Toledo Filho. 2014. Effect of sisal fiber hornification on the fiber-matrix bonding characteristics and bending behavior of cement based composites. Key Engineering Materials 600:421–32. doi:10.4028/scientific.net/KEM.600.421.
  • Filho, E. G. D. O., F. S. D. Luz, R. T. Fujiyama, A. C. R. D. Silva, V. S. Candido, and S. N. Monteiro. 2020. Effect of chemical treatment and length of raffia fiber (Raphia Vinifera) on mechanical stiffening of polyester composites. Polymers 12 (12):1–17. doi:10.3390/polym12122899.
  • Jayme, G. 1943. Über Die Reaktionsfähigkeit von Zellstoffen. Cellulosechemie 21:73–86.
  • Jayme, G., and G. Hunger. 1957. “The REarrangement of microfibrils in dried cellulose and the implication of this structure alteration on pulp properties.” Fundamentals of Papermaking Fibres, 263–70.
  • Köhnke, T., K. Lund, H. Brelid, and G. Westman. 2010. Kraft pulp hornification: A closer look at the preventive effect gained by glucuronoxylan adsorption. Carbohydrate Polymers 81 (2):226–33. doi:10.1016/j.carbpol.2010.02.023.
  • Letková, E., M. Letko, and M. Vrška. 2011. Influence of recycling and temperature on the swelling ability of paper. Chemical Papers 65 (6):822–28. doi:10.2478/s11696-011-0089-z.
  • Li, R., J. Fei, Y. Cai, L. Yufeng, J. Feng, and J. Yao. 2009. Cellulose whiskers extracted from mulberry: A novel biomass production. Carbohydrate Polymers 76 (1):94–99. doi:10.1016/j.carbpol.2008.09.034.
  • Mainier, B., and F. Mahler, and others. 2018. “Study of wet-drying cycles on sisal, jute and white Curaua fibers on the resistance parameters of cement-based composites.”
  • Mbou, E., E. N. Tiaya, A. Kemajou, N. R. T. Sikame, and D. Ndapeu. 2017. Modelling of the water absorption kinetics and determination of the water diffusion coefficient in the Pith of Raffia Vinifera of Bandjoun, Cameroon. Advances in Materials Science and Engineering 2017:1–12. doi:10.1155/2017/1953087.
  • Mejia-Ballesteros, J. E., L. Rodier, R. Filomeno, H. Savastano, J. Fiorelli, and M. Frias Rojas. 2021. Influence of the fiber treatment and matrix modification on the durability of eucalyptus fiber reinforced composites. Cement and Concrete Composites 124 (September):104280. doi:10.1016/j.cemconcomp.2021.104280.
  • Mejouyo, P. W. H., E. Mbou, S. Tagne, S. Tido Tiwa, and E. Njeugna. 2022. Experimental study of water-sorption and desorption of several varieties of oil palm Mesocarp fibers. Results in Materials 14 (May):100284. doi:10.1016/j.rinma.2022.100284.
  • Mendes, S., L. Nunes Hugen, R. Daniel DOS Santos, R. Dias Toledo Filho, and S. Rocha Ferreira. 2021. Influence of water amount and immersion time on the sisal fibers hornification process. Journal of Natural Fibers 18 (11):1712–21. doi:10.1080/15440478.2019.1697990.
  • Mendonçaa, S., Y. Gabriela dos, B. Zukowskib, R. Dias, and T. Filhoc. 2018. Influence of water hornification and alkaline treatment on the stress-strain behaviour of jute fibers. Non-Conventional Materials and Technologies: NOCMAT for the XXI Century 7:383.
  • Moniruzzaman, M., M. A. G. Mohd Maniruzzaman, and C. Santulli. 2009. Lady’s finger fibres for possible use as a reinforcement in composite materials. Journal of Biobased Materials and Bioenergy 3 (3):286–90. doi:10.1166/jbmb.2009.1038.
  • Moosavi, S. A., M. Aghaalikhani, B. Ghobadian, and E. Fayyazi. 2018. Okra: A potential future bioenergy crop in Iran. Renewable and Sustainable Energy Reviews 93 (April):517–24. doi:10.1016/j.rser.2018.04.057.
  • Ojo, E. B., K. O. Bello, O. F. Ngasoh, T. T. Stanislas, K. Mustapha, H. Savastano Jr, and W. Soboyejo. 2020. Mechanical performance of fiber-reinforced alkali activated un-calcined earth-based composites. Construction and Building Materials 247:118588. doi:10.1016/j.conbuildmat.2020.118588.
  • Rahman, M. M., M. Maniruzzaman, M. Rashidul Islam, and M. Saifur Rahman. 2018. Synthesis of nano-cellulose from Okra fibre and FTIR as well as Morphological studies on it. American Journal of Polymer Science and Technology 4 (2):42–52. doi:10.11648/j.ajpst.20180402.11.
  • Salmén, L., and J. S. Stevanic. 2018. Effect of drying conditions on the cellulose microfibril aggregation and ”hornification. Cellulose 25 (11):6333–44. doi:10.1007/s10570-018-2039-1.
  • Santos, J., R. de, and P. Roberto Lopes Lima. 2014. Effect of treatment of sisal fiber on morphology, mechanical properties and fiber-cement bond strength. Key Engineering Materials 634:410–20. doi:10.4028/scientific.net/kem.634.410.
  • Sathishkumar, T. P., P. Navaneethakrishnan, S. Shankar, R. Rajasekar, and N. Rajini. 2013. Characterization of natural fiber and composites-A review. Journal of Reinforced Plastics and Composites 32 (19):1457–76.
  • Savastano, J., P. G. Holmer, R. S. P. P. Warden, C. H. Savastano, P. G. Warden, and R. S. P. P. Coutts. 2000. Brazilian waste fibres as reinforcement for cement-based composites. Cement and Concrete Composites 22 (5):379–84. doi:10.1016/S0958-9465(00)00034-2.
  • Schafleitner, R., C.Y. Lin, Y.P. Lin, W. Tien-Hor, C.H. Hung, C.L. Phooi, S.H. Chu, Y.C. Jhong, and Y.Y. Hsiao. 2021. The world vegetable center Okra (Abelmoschus Esculentus) core collection as a source for flooding stress tolerance traits for breeding. Agriculture 11 (2):165. doi:10.3390/agriculture11020165.
  • Shamsul Alam, M., and G. M. Arifuzzaman Khan. 2007. Chemical analysis of Okra bast fiber (Abelmoschus esculentus) and its physico-chemical properties. Journal of Textile and Apparel, Technology and Management 5 (October 2014):1–9.
  • Sikame Tagne, N. R., E. Njeugna, M. Fogue, J. -Y. Drean, A. Nzeukou, and D. Fokwa. 2014. Study of water absorption in raffia vinifera fibres from bandjoun, cameroon. Scientific World Journal 2014:1–11. doi:10.1155/2014/912380.
  • Sreedhara, S., and N. Tata. 2013. A novel method for measurement of porosity in Nanofiber mat using pycnometer in filtration. Journal of Engineered Fabrics & Fibers 8 (4):132–37. doi:10.1177/155892501300800408.
  • Stanislas, T. T., G. Charles Komadja, O. Fayen Ngasoh, I. Ijeoma Obianyo, J. Foba Tendo, P. Azikiwe Onwualu, and H. Savastano Junior. 2021a. Performance and durability of cellulose pulp-reinforced extruded earth-based composites. Arabian Journal for Science and Engineering 46 (11):0123456789. doi:10.1007/s13369-021-05698-1.
  • Stanislas, T. T., J. Foba Tendo, E. Beckley Ojo, O. Fayen Ngasoh, P. Azikiwe Onwualu, E. Njeugna, and H. Savastano Junior. 2020. Production and characterization of Pulp and Nanofibrillated cellulose from selected tropical plants. Journal of Natural Fibers 00 (00):1–17. doi:10.1080/15440478.2020.1787915.
  • Stanislas, T. T., G. C. Komadja, Y. R. Nafu, A. A. Mahamat, P. W. H. Mejouyo, J. F. Tendo, E. Njeugna, P. A. Onwualu, and H. Savastano Junior. 2022. Potential of Raffia Nanofibrillated cellulose as a reinforcement in extruded earth-based materials. Case Studies in Construction Materials 16:16. doi:10.1016/j.cscm.2022.e00926.
  • Stanislas, T. T., J. F. Tendo, R. S. Teixeira, E. B. Ojo, G. C. Komadja, M. Kadivar, and H. J. Savastano. 2021b. Effect of cellulose Pulp fibres on the physical, mechanical, and thermal performance of extruded earth-based materials. Journal of Building Engineering 39 (July):102259. doi:10.1016/j.jobe.2021.102259.
  • Tagne, N. R. S., D. Ndapeu, D. Nkemaja, G. Tchemou, D. Fokwa, W. Huisken, E. Njeugna, M. Fogue, J. -Y. Drean, and O. Harzallah. 2018. Study of the viscoelastic behaviour of the Raffia Vinifera fibres. Industrial Crops and Products 124:572–81. doi:10.1016/j.indcrop.2018.07.077.
  • Tagne, N. R. S., E. Njeugna, M. Fogue, J. Y. Drean, and D. Fokwa. 2013. Study of water diffusion through Raffia Vinifera fibres of the stem from bandjoun- Cameroon: Case of drying kinetics. Research Journal of Applied Sciences, Engineering and Technology 6 (19):3547–58. doi:10.19026/rjaset.6.3559.
  • Tagne, S., N. Rodrigue, N. Ebénézer, N. Dieunedort, F. Didier, M. Fogue, J.Y. Drean, and O. Harzallah. 2017. Investigation of the physical and mechanical properties of Raffia Vinifera fibers along the stem investigation of the physical and mechanical properties of Raffia Vinifera fibers along the stem. Journal of Natural Fibers 14 (5):621–33. doi:10.1080/15440478.2016.1250025.
  • Tenazoa, C., H. Savastano, S. Charca, M. Quintana, and E. Flores. 2019. The effect of alkali treatment on chemical and physical properties of Ichu and Cabuya fibers. Journal of Natural Fibers 00 (00):1–14. doi:10.1080/15440478.2019.1675211.
  • Tonoli, G. H. D., U. P. Rodrigues Filho, H. Savastano, J. Bras, M. N. Belgacem, and F. A. Rocco Lahr. 2009. Cellulose modified fibres in cement based composites. Composites Part A, Applied Science and Manufacturing 40 (12):2046–53. doi:10.1016/j.compositesa.2009.09.016.
  • Wang, Z., Y. Che, J. Li, W. Wu, B. Yan, Y. Zhang, X. Wang, G. Yu, X. Zuo, and X. Li. 2022. Effects of anaerobic digestion pretreatment on the Pyrolysis of Sargassum: Investigation by TG-FTIR and Py-GC/MS. Energy Conversion and Management 267:115934. doi:10.1016/j.enconman.2022.115934.
  • Youbi, S. B. T., N. Rodrigue Sikame Tagne, O. Harzallah, P. William Mejouyo Huisken, T. Tiwa Stanislas, E. Njeugna, J.Y. Drean, and S. Bistac-Brogly. 2022. Effect of Alkali and Silane treatments on the surface energy and mechanical performances of Raphia Vinifera fibres. Industrial Crops and Products 190:115854. doi:10.1016/j.indcrop.2022.115854.