1,537
Views
2
CrossRef citations to date
0
Altmetric
Review

Mini Review of Technological Trends of Flexible Supercapacitors Using Carbon Nanotubes

, &

References

  • Agrawal, P. M., B. S. Sudalayandi, L. M. Raff, and R. Komanduri. 2006. A comparison of different methods of Young’s modulus determination for single-wall carbon nanotubes (SWCNT) using molecular dynamics (MD) simulations. Computational Materials Science 38 (2):271–32. doi:10.1016/j.commatsci.2006.02.011.
  • An, K. H., K. K. Jeon, J. K. Heo, S. C. Lim, D. J. Bae, and Y. H. Lee. 2002. High-Capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole. Journal of the Electrochemical Society 149 (8):A1058. doi:10.1149/1.1491235.
  • Ansari, R., M. Mirnezhad, and S. Sahmani. 2013. An accurate molecular mechanics model for computation of size-dependent elastic properties of armchair and zigzag single-walled carbon nanotubes. Meccanica 48 (6):1355–67. doi:10.1007/s11012-012-9671-x.
  • Aruchamy, K., R. Nagaraj, H. M. Manohara, M. R. Nidhi, D. Mondal, D. Ghosh, and S. K. Nataraj. 2020. One-step green route synthesis of spinel ZnMn2O4 nanoparticles decorated on MWCNTs as a novel electrode material for supercapacitor. Materials Science and Engineering: B 252:114481. doi:10.1016/j.mseb.2019.114481.
  • Awata, R., M. Shehab, A. El Tahan, M. Soliman, and S. Ebrahim. 2020. High performance supercapacitor based on camphor sulfonic acid doped polyaniline/multiwall carbon nanotubes nanocomposite. Electrochimica acta 347:136229. doi:10.1016/j.electacta.2020.136229.
  • Aziz, S. B., J. M. Hadi, E. M. Dannoun, R. T. Abdulwahid, S. R. Saeed, A. Shahab Marf, W. O. Karim, and M. F. Kadir. 2020. The study of plasticized amorphous biopolymer blend electrolytes based on polyvinyl alcohol (PVA): Chitosan with high ion conductivity for energy storage electrical double-layer capacitors (EDLC) device application. Polymers 12 (9):1938. doi:10.3390/polym12091938.
  • Badawi, N. M., M. Bhatia, S. Ramesh, K. Ramesh, M. Kuniyil, M. R. Shaik, M. Khan, B. Shaik, and S. F. Adil. 2023. Self-healing, flexible and smart 3d hydrogel electrolytes based on alginate/PEDOT: PSS for supercapacitor applications. Polymers (Basel) 15:3. doi:10.3390/polym15030571.
  • Badawi, N. M., S. R. Khalid Mujasam Batoo, S. Ramesh, K. Ramesh, and A. Imran. 2023. Swcnts/PEDOT: PSS Coated Cotton for Wearable Clothes and Supercapacitor Applications. Sustainability 15 (1):889.
  • Basirjafari, S., S. Esmaielzadeh Khadem, and R. Malekfar. 2013. Determination of the inner diameter of a double-walled carbon nanotube from its Raman spectra. Journal of Applied Physics 113 (6):064304. doi:10.1063/1.4790162.
  • Benguediab, S., A. Tounsi, M. Zidour, and A. Semmah. 2014. Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes. Composites Part B: Engineering 57:21–24. doi:10.1016/j.compositesb.2013.08.020.
  • Boumia, L., M. Zidour, A. Benzair, and A. Tounsi. 2014. A Timoshenko beam model for vibration analysis of chiral single-walled carbon nanotubes. Physica. E, Low-Dimensional Systems & Nanostructures 59:186–91. doi:10.1016/j.physe.2014.01.020.
  • Bu, Y., T. Shen, W. Yang, S. Yang, Y. Zhao, H. Liu, Y. Zheng, C. Liu, and C. Shen. 2021. Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2Tx MXene/paper for human-motion monitoring and E-skin. Science Bulletin 66 (18):1849–57. doi:10.1016/j.scib.2021.04.041.
  • Celzard, A., F. Collas, J. F. Marêché, G. Furdin, and I. Rey. 2002. Porous electrodes-based double-layer supercapacitors: Pore structure versus series resistance. Journal of Power Sources 108 (1):153–62. doi:10.1016/S0378-7753(02)00030-7.
  • Chang, H., L. Zhang, S. Lyu, and S. Wang. 2022. Flexible and freestanding MoS2 nanosheet/carbon nanotube/cellulose nanofibril hybrid aerogel film for high-performance all-solid-state supercapacitors. ACS Omega 7 (16):14390–99. doi:10.1021/acsomega.2c01815.
  • Charoenpakdee, J., O. Suntijitrungruang, and S. Boonchui. 2020. Chirality effects on an electron transport in single-walled carbon nanotube. Scientific Reports 10 (1):18949. doi:10.1038/s41598-020-76047-9.
  • Chen, T., and L. Dai. 2014. Flexible supercapacitors based on carbon nanomaterials. Journal of Materials Chemistry A 2 (28):10756–75. doi:10.1039/c4ta00567h.
  • Chen, D., K. Jiang, T. Huang, and G. Shen. 2020. Recent advances in fiber supercapacitors: Materials, device configurations, and applications. Advanced Materials 32 (5):1901806. doi:10.1002/adma.201901806.
  • Chen, R., J. Liang, J. Lee, V. P. Georgiev, R. Ramos, H. Okuno, D. Kalita, Y. Cheng, L. Zhang, R. R. Pandey, et al. 2018a. Variability study of MWCNT local interconnects considering defects and contact resistances—Part I: Pristine MWCNT. IEEE Transactions on Electron Devices 65 (11):4955–62. doi:10.1109/TED.2018.2868421.
  • Chen, R., J. Liang, J. Lee, V. P. Georgiev, R. Ramos, H. Okuno, D. Kalita, Y. Cheng, L. Zhang, R. R. Pandey, et al. 2018b. Variability study of MWCNT local interconnects considering defects and contact resistances—Part II: Impact of charge transfer doping. IEEE Transactions on Electron Devices 65 (11):4963–70. doi:10.1109/TED.2018.2868424.
  • Chen, H., S. Zeng, M. Chen, Y. Zhang, and Q. Li. 2015. Fabrication and functionalization of carbon nanotube films for high-performance flexible supercapacitors. Carbon 92:271–96. doi:10.1016/j.carbon.2015.04.010.
  • Cherusseri, J., D. Pandey, K. Sambath Kumar, J. Thomas, and L. Zhai. 2020. Flexible supercapacitor electrodes using metal–organic frameworks. Nanoscale 12 (34):17649–62. doi:10.1039/D0NR03549A.
  • Choi, C., D. S. Ashby, D. M. Butts, R. H. DeBlock, Q. Wei, J. Lau, and B. Dunn. 2020. Achieving high energy density and high power density with pseudocapacitive materials. Nature Reviews Materials 5 (1):5–19. doi:10.1038/s41578-019-0142-z.
  • Ci, L., Z. Rao, Z. Zhou, D. Tang, X. Yan, Y. Liang, D. Liu, H. Yuan, W. Zhou, G. Wang, et al. 2002. Double wall carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system. Chemical Physics Letters 359 (1–2):63–67. doi:10.1016/S0009-2614(02)00600-0.
  • Curtin, W. A., and B. W. Sheldon. 2004. CNT-reinforced ceramics and metals. Materials Today 7 (11):44–49. doi:10.1016/S1369-7021(04)00508-5.
  • Dai, H. 2002. Carbon nanotubes: Synthesis, integration, and properties. Accounts of Chemical Research 35 (12):1035–44. doi:10.1021/ar0101640.
  • Da Silva, L. M., R. Cesar, C. M. Moreira, J. H. Santos, L. G. De Souza, B. M. Pires, R. Vicentini, W. Nunes, and H. Zanin. 2020. Reviewing the fundamentals of supercapacitors and the difficulties involving the analysis of the electrochemical findings obtained for porous electrode materials. Energy Storage Materials 27:555–90. doi:10.1016/j.ensm.2019.12.015.
  • Datta, S., S. Wang, C. Tilmaciu, E. Flahaut, L. Marty, M. Grifoni, and W. Wernsdorfer. 2011. Electronic transport properties of double-wall carbon nanotubes. Physical Review B 84 (3):035408. doi:10.1103/PhysRevB.84.035408.
  • Di Bartolomeo, A., M. Rinzan, A. K. Boyd, Y. Yang, L. Guadagno, F. Giubileo, and P. Barbara. 2010. Electrical properties and memory effects of field-effect transistors from networks of single-and double-walled carbon nanotubes. Nanotechnology 21 (11):115204. doi:10.1088/0957-4484/21/11/115204.
  • Doh, J., S.I. Park, Q. Yang, and N. Raghavan. 2019. The effect of carbon nanotube chirality on the electrical conductivity of polymer nanocomposites considering tunneling resistance. Nanotechnology 30 (46):465701. doi:10.1088/1361-6528/ab3b79.
  • Domagała, K., M. Borlaf, J. Traber, D. Kata, and T. Graule. 2019. Purification and functionalisation of multi-walled carbon nanotubes. Materials Letters 253:272–75. doi:10.1016/j.matlet.2019.06.085.
  • Eatemadi, A., H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour, and S. Woo Joo. 2014. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Research Letters 9 (1):1–13. doi:10.1186/1556-276X-9-393.
  • Esawi, A. M. K., K. Morsi, A. Sayed, M. Taher, and S. Lanka. 2011. The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites. Composites Part A, Applied Science and Manufacturing 42 (3):234–43. doi:10.1016/j.compositesa.2010.11.008.
  • Faraji, S., and F. Nasir Ani. 2015. The development supercapacitor from activated carbon by electroless plating—A review. Renewable and Sustainable Energy Reviews 42:823–34. doi:10.1016/j.rser.2014.10.068.
  • Faria, B., N. Silvestre, and J. N. Canongia Lopes. 2013. Tension–twisting dependent kinematics of chiral CNTs. Composites Science and Technology 74:211–20. doi:10.1016/j.compscitech.2012.11.010.
  • Gao, S., K. Wang, Z. Du, Y. Wang, A. Yuan, W. Lu, and L. Chen. 2015. High power density electric double-layer capacitor based on a porous multi-walled carbon nanotube microsphere as a local electrolyte micro-reservoir. Carbon 92:254–61. doi:10.1016/j.carbon.2015.04.034.
  • Gaviria Rojas, W. A., and M. C. Hersam. 2020. Chirality‐enriched carbon nanotubes for next‐generation computing. Advanced Materials 32 (41):1905654. doi:10.1002/adma.201905654.
  • Gnanasekaran, K., T. Heijmans, S. Van Bennekom, H. Woldhuis, S. Wijnia, G. De with, and H. Friedrich. 2017. 3D printing of CNT-and graphene-based conductive polymer nanocomposites by fused deposition modeling. Applied Materials Today 9:21–28. doi:10.1016/j.apmt.2017.04.003.
  • Gong, X., Q. Yang, C. Zhi, and P. See Lee. 2021. Stretchable energy storage devices: From materials and structural design to device assembly. Advanced Energy Materials 11 (15):2003308. doi:10.1002/aenm.202003308.
  • Gregg, A., M. F. De Volder, and J. J. Baumberg. 2022. Light‐actuated anisotropic microactuators from CNT/hydrogel nanocomposites. Advanced Optical Materials 10 (13):2200180. doi:10.1002/adom.202200180.
  • Guillet, J.F., Z. Valdez-Nava, M. Golzio, and E. Flahaut. 2019. Electrical properties of double-wall carbon nanotubes nanocomposite hydrogels. Carbon 146:542–48. doi:10.1016/j.carbon.2019.01.090.
  • Han, L., Q. Song, J. Sun, K. Li, and Y. Lu. 2020. The role of CNT in improving the mechanical strength retention rate of C/C composites during heat treatment. Composites Part B: Engineering 187:107856. doi:10.1016/j.compositesb.2020.107856.
  • Hároz, E. H., J. G. Duque, X. Tu, M. Zheng, A. R. Walker, R. H. Hauge, S. K. Doorn, and J. Kono. 2013. Fundamental optical processes in armchair carbon nanotubes. Nanoscale 5 (4):1411–39. doi:10.1039/c2nr32769d.
  • Hillier, N., S. Yong, and S. Beeby. 2020. The good, the bad and the porous: A review of carbonaceous materials for flexible supercapacitor applications. Energy Reports 6:148–56. doi:10.1016/j.egyr.2020.03.019.
  • Hou, P. -X., C. Liu, and H. -M. Cheng. 2008. Purification of carbon nanotubes. Carbon 46 (15):2003–25. doi:10.1016/j.carbon.2008.09.009.
  • Iijima, S. 1991. Helical microtubules of graphitic carbon. Nature 354 (6348):56–58. doi:10.1038/354056a0.
  • Ike, I. S., I. Sigalas, and S. Iyuke. 2016. Understanding performance limitation and suppression of leakage current or self-discharge in electrochemical capacitors: A review. Physical Chemistry Chemical Physics 18 (2):661–80. doi:10.1039/C5CP05459A.
  • Imazu, N., T. Fujigaya, and N. Nakashima. 2015. Fabrication of highly transparent, thermally stable, and scalable conductive films from double-walled carbon nanotubes. Bulletin of the Chemical Society of Japan 88 (1):217–21. doi:10.1246/bcsj.20140277.
  • Ismail, A. F., P. S. Goh, J. C. Tee, S. M. Sanip, and M. Aziz. 2008. A REVIEW OF PURIFICATION TECHNIQUES FOR CARBON NANOTUBES. Nano 03 (03):127–43. doi:10.1142/S1793292008000927.
  • Jeerapan, I., and M. Nicolás. 2019. Challenges and opportunities of carbon nanomaterials for biofuel cells and supercapacitors: Personalized energy for futuristic self-sustainable devices. C — Journal of Carbon Research 5 (4):62. doi:10.3390/c5040062.
  • Jeon, I., J. Yoon, U. Kim, C. Lee, R. Xiang, A. Shawky, J. Xi, J. Byeon, H. Mo Lee, and M. Choi. 2019. High‐performance solution‐processed double‐walled carbon nanotube transparent electrode for perovskite solar cells. Advanced Energy Materials 9 (27):1901204. doi:10.1002/aenm.201901204.
  • Jiang, Y., and J. Liu. 2019. Definitions of pseudocapacitive materials: A brief review. ENERGY & ENVIRONMENTAL MATERIALS 2 (1):30–37. doi:10.1002/eem2.12028.
  • Jia, F., C. Yu, K. Deng, and L. Zhang. 2007. Nanoporous metal (Cu, Ag, Au) films with high surface area: General fabrication and preliminary electrochemical performance. The Journal of Physical Chemistry C 111 (24):8424–31. doi:10.1021/jp071815y.
  • Joselevich, E. 2006. Twisting nanotubes: From torsion to chirality. Chemphyschem: A European Journal of Chemical Physics and Physical Chemistry 7 (7):1405–07. doi:10.1002/cphc.200600206.
  • Jung, S. I., S. H. Jo, H. S. Moon, J. M. Kim, D. -S. Zang, and C. J. Lee. 2007. Improved crystallinity of double-walled carbon nanotubes after a high-temperature thermal annealing and their enhanced field emission properties. The Journal of Physical Chemistry C 111 (11):4175–79. doi:10.1021/jp0676078.
  • Kang, C. -S., Y. -I. Ko, K. Fujisawa, T. Yokokawa, J. Hee Kim, J. Hun Han, J. -H. Wee, Y. Ahm Kim, H. Muramatsu, and T. Hayashi. 2020. Hybridized double-walled carbon nanotubes and activated carbon as free-standing electrode for flexible supercapacitor applications. Carbon Letters 30 (5):527–34. doi:10.1007/s42823-020-00122-4.
  • Kanoun, O., A. Bouhamed, R. Ramalingame, J. Roberto Bautista-Quijano, D. Rajendran, and A. Al-Hamry. 2021. Review on conductive polymer/CNTs nanocomposites based flexible and stretchable strain and pressure sensors. Sensors 21 (2):341. doi:10.3390/s21020341.
  • Kim, H., P. Matteini, and B. Hwang. 2022. Mini review of reliable fabrication of electrode under stretching for supercapacitor application. Micromachines 13 (9):1470. doi:10.3390/mi13091470.
  • Kim, G. M., I. W. Nam, H. Y. Beomjoo Yang, H.K. Lee, and S. Park. 2019. Carbon nanotube (CNT) incorporated cementitious composites for functional construction materials: The state of the art. Composite Structures 227:111244. doi:10.1016/j.compstruct.2019.111244.
  • Kim, D. -H., and J. A. Rogers. 2008. Stretchable electronics: Materials strategies and devices. Advanced Materials 20 (24):4887–92. doi:10.1002/adma.200801788.
  • Kim, H. -I., M. Wang, S. K. Lee, J. Kang, J. -D. Nam, L. Ci, and J. Suhr. 2017. Tensile properties of millimeter-long multi-walled carbon nanotubes. Scientific Reports 7 (1):1–7. doi:10.1038/s41598-017-10279-0.
  • Kim, G. M., B. J. Yang, K. J. Cho, E. M. Kim, and H.K. Lee. 2017. Influences of CNT dispersion and pore characteristics on the electrical performance of cementitious composites. Composite Structures 164:32–42. doi:10.1016/j.compstruct.2016.12.049.
  • Kim, Y. A., K. -S. Yang, H. Muramatsu, T. Hayashi, M. Endo, M. Terrones, and M. S. Dresselhaus. 2014. Double-walled carbon nanotubes: Synthesis, structural characterization, and application. Carbon Letters 15 (2):77–88. doi:10.5714/CL.2014.15.2.077.
  • Kobashi, K., H. Nishino, T. Yamada, D. N. Futaba, M. Yumura, and K. Hata. 2011. Epoxy composite sheets with a large interfacial area from a high surface area-supplying single-walled carbon nanotube scaffold filler. Carbon 49 (15):5090–98. doi:10.1016/j.carbon.2011.07.028.
  • Kociak, M., K. Suenaga, K. Hirahara, Y. Saito, T. Nakahira, and S. Iijima. 2002. Linking chiral indices and transport properties of double-walled carbon nanotubes. Physical Review Letters 89 (15):155501. doi:10.1103/PhysRevLett.89.155501.
  • Kwon, Y.K., and D. Tománek. 1998. Electronic and structural properties of multiwall carbon nanotubes. Physical Review B 58 (24):R16001. doi:10.1103/PhysRevB.58.R16001.
  • Lair, S. L., W. C. Herndon, and L. E. Murr. 2008. Stability comparison of simulated double-walled carbon nanotube structures. Carbon 46 (15):2083–95. doi:10.1016/j.carbon.2008.08.022.
  • Laurent, C., E. Flahaut, and A. Peigney. 2010. The weight and density of carbon nanotubes versus the number of walls and diameter. Carbon 48 (10):2994–96. doi:10.1016/j.carbon.2010.04.010.
  • Lee, S. H., E. Cho, S. Hee Jeon, and J. Ryoun Youn. 2007. Rheological and electrical properties of polypropylene composites containing functionalized multi-walled carbon nanotubes and compatibilizers. Carbon 45 (14):2810–22. doi:10.1016/j.carbon.2007.08.042.
  • Lee, H., G. Lee, J. Yun, K. Keum, S. Yeong Hong, C. Song, J. Wook Kim, J. Ho Lee, S. Y. Oh, and D. Sik Kim. 2019. Facile fabrication of a fully biodegradable and stretchable serpentine-shaped wire supercapacitor. Chemical Engineering Journal 366:62–71. doi:10.1016/j.cej.2019.02.076.
  • Lei, C., and C. Lekakou. 2010. Carbon-based nanocomposite EDLC supercapacitorsAdvanced Materials, CNTs, Particles, Films and Composites. Nanotechnology 1:176–79. 2010.
  • Lian, F., J. P. Llinas, Z. Li, D. Estrada, and E. Pop. 2016. Thermal conductivity of chirality-sorted carbon nanotube networks. Applied Physics Letters 108 (10):103101. doi:10.1063/1.4942968.
  • Libich, J., J. Máca, J. Vondrák, O. Čech, and M. Sedlaříková. 2018. Supercapacitors: Properties and applications. Journal of Energy Storage 17:224–27. doi:10.1016/j.est.2018.03.012.
  • Liew, K. M., C. H. Wong, and M. J. Tan. 2006. Tensile and compressive properties of carbon nanotube bundles. Acta Materialia 54 (1):225–31. doi:10.1016/j.actamat.2005.09.002.
  • Likitchatchawankun, A., R. H. DeBlock, G. Whang, O. Munteshari, M. Frajnkovič, B. S. Dunn, and L. Pilon. 2021. Heat generation in electric double layer capacitors with neat and diluted ionic liquid electrolytes under large potential window between 5 and 80° C. Journal of Power Sources 488:229368. doi:10.1016/j.jpowsour.2020.229368.
  • Lim, H. -R., H. Seok Kim, R. Qazi, Y. -T. Kwon, J. -W. Jeong, and W. -H. Yeo. 2020. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Advanced Materials 32 (15):1901924. doi:10.1002/adma.201901924.
  • Lin, C. -M., Y. -T. Lee, S. -R. Yeh, and W. Fang. 2009. Flexible carbon nanotubes electrode for neural recording. Biosensors & Bioelectronics 24 (9):2791–97. doi:10.1016/j.bios.2009.02.005.
  • Li, X., J. Shao, S. -K. Kim, C. Yao, J. Wang, Y. -R. Miao, Q. Zheng, P. Sun, R. Zhang, and P. V. Braun. 2018. High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes. Nature Communications 9 (1):1–8. doi:10.1038/s41467-018-04937-8.
  • Liu, B., F. Wu, H. Gui, M. Zheng, and C. Zhou. 2017. Chirality-controlled synthesis and applications of single-wall carbon nanotubes. ACS Nano 11 (1):31–53. doi:10.1021/acsnano.6b06900.
  • Li, Y., K. Wang, J. Wei, Z. Gu, Z. Wang, J. Luo, and D. Wu. 2005. Tensile properties of long aligned double-walled carbon nanotube strands. Carbon 43 (1):31–35. doi:10.1016/j.carbon.2004.08.017.
  • Lota, K., V. Khomenko, and E. Frackowiak. 2004. Capacitance properties of poly (3, 4-ethylenedioxythiophene)/carbon nanotubes composites. The Journal of Physics and Chemistry of Solids 65 (2–3):295–301. doi:10.1016/j.jpcs.2003.10.051.
  • Lu, J. P. 1997. Elastic properties of carbon nanotubes and nanoropes. Physical Review Letters 79 (7):1297–300. doi:10.1103/PhysRevLett.79.1297.
  • Lu, X., and Z. Chen. 2005. Curved pi-conjugation, aromaticity, and the related chemistry of small fullerenes (< C60) and single-walled carbon nanotubes. Chemical Reviews 105 (10):3643–96. doi:10.1021/cr030093d.
  • Lukatskaya, M. R., B. Dunn, and Y. Gogotsi. 2016. Multidimensional materials and device architectures for future hybrid energy storage. Nature Communications 7 (1):1–13. doi:10.1038/ncomms12647.
  • Mahankali, K., N. Kumar Thangavel, Y. Ding, S. K. Putatunda, and L. Mohana Reddy Arava. 2019. Interfacial behavior of water-in-salt electrolytes at porous electrodes and its effect on supercapacitor performance. Electrochimica acta 326:134989. doi:10.1016/j.electacta.2019.134989.
  • Ma, Z., J. Zhao, Y. Fan, X. Qin, and G. Shao. 2022. High surface area of crystalline/amorphous ultrathin MnO2 nanosheets electrode for high-performance flexible micro-supercapacitors. Journal of Alloys and Compounds 920:166012. doi:10.1016/j.jallcom.2022.166012.
  • Mikhalchan, A., and J. José Vilatela. 2019. A perspective on high-performance CNT fibres for structural composites. Carbon 150:191–215. doi:10.1016/j.carbon.2019.04.113.
  • Mintmire, J. W., and C. T. White. 1995. Electronic and structural properties of carbon nanotubes. Carbon 33 (7):893–902. doi:10.1016/0008-6223(95)00018-9.
  • Mitra, M., and S. Gopalakrishnan. 2009. Wave propagation in multi-walled carbon nanotube. Computational Materials Science 45 (2):411–18. doi:10.1016/j.commatsci.2008.10.022.
  • Montazeri, A., J. Javadpour, A. Khavandi, A. Tcharkhtchi, and A. Mohajeri. 2010. Mechanical properties of multi-walled carbon nanotube/epoxy composites. Materials & Design 31 (9):4202–08. doi:10.1016/j.matdes.2010.04.018.
  • Moore, K. E., D. D. Tune, and B. S. Flavel. 2015. Double‐walled carbon nanotube processing. Advanced Materials 27 (20):3105–37. doi:10.1002/adma.201405686.
  • Moradian, R., S. Azadi, and H. Refii-Tabar. 2007. When double-wall carbon nanotubes can become metallic or semiconducting. Journal of Physics: Condensed Matter 19 (17):176209. doi:10.1088/0953-8984/19/17/176209.
  • Muangrat, W., M. Obata, M. Than Htay, M. Fujishige, P. Dulyaseree, W. Wongwiriyapan, and Y. Hashimoto. 2021. Nitrogen-doped graphene nanosheet-double-walled carbon nanotube hybrid nanostructures for high-performance supercapacitors. FlatChem 29:100292. doi:10.1016/j.flatc.2021.100292.
  • Natsuki, T., T. Hayashi, and M. Endo. 2006. Mechanical properties of single-and double-walled carbon nanotubes under hydrostatic pressure. Applied Physics A 83 (1):13–17. doi:10.1007/s00339-005-3462-3.
  • Na, Y. W., J. Yeong Cheon, J. Ho Kim, Y. Jung, K. Lee, J. S. Park, J. Y. Park, K. Su Song, S. Bok Lee, T. Kim, et al. 2022. All-in-one flexible supercapacitor with ultrastable performance under extreme load. Science Advances 8 (1):eabl8631. doi:10.1126/sciadv.abl8631.
  • Nikita, G., S. Mital Gupta, and S. K. Sharma. 2019. Carbon nanotubes: Synthesis, properties and engineering applications. Carbon Letters 29 (5):419–47. doi:10.1007/s42823-019-00068-2.
  • Nurazzi, N. M., F. A. Sabaruddin, M. M. Harussani, S. H. Kamarudin, M. Rayung, M. R. M. Asyraf, H. A. Aisyah, M. N. F. Norrrahim, R. A. Ilyas, N. Abdullah, et al. 2021. Mechanical performance and applications of CNTs reinforced polymer composites—a review. Nanomaterials (Basel) 11 (9):2186. doi:10.3390/nano11092186.
  • Odom, T. W., J. -L. Huang, P. Kim, and C. M. Lieber. 2000. Structure and electronic properties of carbon nanotubes. The Journal of Physical Chemistry B 104 (13):2794–809. doi:10.1021/jp993592k.
  • Olabi, A. G., Q. Abbas, M. Ali Abdelkareem, A. Hai Alami, M. Mirzaeian, and E. Taha Sayed. 2023. Carbon-based materials for supercapacitors: recent progress, challenges and barriers. Batteries 9 (1):19. doi:10.3390/batteries9010019.
  • Park, S. J., S. T. Lim, M. S. Cho, H. M. Kim, J. Joo, and H. J. Choi. 2005. Electrical properties of multi-walled carbon nanotube/poly (methyl methacrylate) nanocomposite. Current Applied Physics 5 (4):302–04. doi:10.1016/j.cap.2004.02.013.
  • Park, S. K., Q. Mahmood, and H. Seok Park. 2013. Surface functional groups of carbon nanotubes to manipulate capacitive behaviors. Nanoscale 5 (24):12304–09. doi:10.1039/c3nr04858f.
  • Parvaneh, V., and M. Shariati. 2011. Effect of defects and loading on prediction of Young’s modulus of SWCNTs. Acta Mechanica 216 (1):281–89. doi:10.1007/s00707-010-0373-y.
  • Patil, S. S., T. S. Bhat, A. M. Teli, S. A. Beknalkar, S. B. Dhavale, M. M. Faras, M. M. Karanjkar, and P. S. Patil. 2020. Hybrid solid state supercapacitors (Hssc’s) for high energy & power density: An overview. Engineered Science 12 (4):38–51. doi:10.30919/es8d1140.
  • Peng, C., J. Jin, and G. Z. Chen. 2007. A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes. Electrochimica acta 53 (2):525–37. doi:10.1016/j.electacta.2007.07.004.
  • Pennington, G., and N. Goldsman. 2003. Semiclassical transport and phonon scattering of electrons in semiconducting carbon nanotubes. Physical Review B 68 (4):045426. doi:10.1103/PhysRevB.68.045426.
  • Popov, V. N. 2004. Carbon nanotubes: Properties and application. Materials Science and Engineering: R: Reports 43 (3):61–102. doi:10.1016/j.mser.2003.10.001.
  • Pu, S. -N., W. -Y. Yin, J. -F. Mao, and Q. H. Liu. 2009. Crosstalk prediction of single-and double-walled carbon-nanotube (SWCNT/DWCNT) bundle interconnects. IEEE Transactions on Electron Devices 56 (4):560–68. doi:10.1109/TED.2009.2014429.
  • Qian, Q., Y. Wang, M. Zhang, L. Chen, J. Feng, Y. Wang, and Y. Zhou. 2019. Ultrasensitive paper-based polyaniline/graphene composite strain sensor for sign language expression. Compos Sci Tech 181 (February):107660–107660. doi:10.1016/j.compscitech.2019.05.017.
  • Roche, S., F. Triozon, A. Rubio, and D. Mayou. 2001. Electronic conduction in multi-walled carbon nanotubes: Role of intershell coupling and incommensurability. Physics Letters A 285 (1–2):94–100. doi:10.1016/S0375-9601(01)00330-9.
  • Ryu, S., J. B. Chou, K. Lee, D. Lee, S. Hyung Hong, R. Zhao, H. Lee, and S. -G. Kim. 2015. Direct insulation‐to‐conduction transformation of adhesive catecholamine for simultaneous increases of electrical conductivity and mechanical strength of CNT fibers. Advanced Materials 27 (21):3250–55. doi:10.1002/adma.201500914.
  • Sadiq, M., M. Ajmal Khan, M. Moeen Hasan Raza, S. Masheerul Aalam, M. Zulfequar, and J. Ali. 2022. Enhancement of electrochemical stability window and electrical properties of CNT-Based PVA–PEG polymer blend composites. ACS Omega 7 (44):40116–31. doi:10.1021/acsomega.2c04933.
  • Salinas-Torres, D., R. Ruiz-Rosas, E. Morallón, and D. Cazorla-Amorós. 2019. Strategies to enhance the performance of electrochemical capacitors based on carbon materials. Frontiers in Materials 6. doi:10.3389/fmats.2019.00115.
  • Salvetat, J. P., J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forró, W. Benoit, and L. Zuppiroli. 1999. Mechanical properties of carbon nanotubes. Applied Physics A 69 (3):255–60. doi:10.1007/s003390050999.
  • Samy, M. M., M. G. Mohamed, A. F. M. El-Mahdy, T. Hassan Mansoure, K. C. W. Wu, and S. -W. Kuo. 2021. High-performance supercapacitor electrodes prepared from dispersions of tetrabenzonaphthalene-based conjugated microporous polymers and carbon nanotubes. ACS Applied Materials & Interfaces 13 (44):51906–16. doi:10.1021/acsami.1c05720.
  • Sandanayaka, A. S., N. K. Subbaiyan, S. K. Das, R. Chitta, E. Maligaspe, T. Hasobe, O. Ito, and F. D’Souza. 2011. Diameter‐sorted SWCNT–Porphyrin and SWCNT–Phthalocyanine conjugates for light‐energy harvesting. ChemPhyschem 12 (12):2266–73. doi:10.1002/cphc.201100377.
  • Shen, C., A. H. Brozena, and Y. Wang. 2011. Double-walled carbon nanotubes: Challenges and opportunities. Nanoscale 3 (2):503–18. doi:10.1039/C0NR00620C.
  • Shi, J., B. Jiang, Z. Liu, C. Li, F. Yan, X. Liu, H. Li, C. Yang, and D. Dong. 2021. Effects of specific surface area of electrode and different electrolyte on capacitance properties in nano porous-structure CrN thin film electrode for supercapacitor. Ceramics International 47 (13):18540–49. doi:10.1016/j.ceramint.2021.03.177.
  • Shin, D., H. Hwang, T. Yeo, S. Park, T. Kim, J. Lee, and W. Choi. 2019. Sol-gel-driven combustion wave for scalable transformation of Mn(NO3)2 precursors into MnO2-X/MWCNT supercapacitor electrodes capable of electrochemical activation. Carbon 152:746–54. doi:10.1016/j.carbon.2019.06.071.
  • Shiraishi, S., H. Kurihara, K. Okabe, D. Hulicova, and A. Oya. 2002. Electric double layer capacitance of highly pure single-walled carbon nanotubes (HiPco™ Buckytubes™) in propylene carbonate electrolytes. Electrochemistry Communications 4 (7):593–98. doi:10.1016/S1388-2481(02)00382-X.
  • Shi, S., C. Xu, C. Yang, J. Li, H. Du, B. Li, and F. Kang. 2013. Flexible supercapacitors. Particuology 11 (4):371–77. doi:10.1016/j.partic.2012.12.004.
  • Shokry, A., M. Karim, M. Khalil, S. Ebrahim, and J. El Nady. 2022. Supercapacitor based on polymeric binary composite of polythiophene and single-walled carbon nanotubes. Scientific Reports 12 (1):11278. doi:10.1038/s41598-022-15477-z.
  • Silki, S., A. Gupta, A. S. Maan, S. Dahiya, K. Singh, and A. Ohlan. 2022. Design and synthesis of polyaniline/MWCNT composite hydrogel as a binder-free flexible supercapacitor electrode. Indian Journal of Physics 96 (2):433–39. doi:10.1007/s12648-020-01996-w.
  • Sinha, P., and K. K. Kamal. 2020. Introduction to Supercapacitors. In Handbook of nanocomposite supercapacitor materials II: Performance, ed. K. K. Kar, 1–28. Cham: Springer International Publishing.
  • Soto, M., T. A. Boyer, S. Biradar, L. Ge, R. Vajtai, A. Elías-Zúñiga, P. M. Ajayan, and E. V. Barrera. 2015. Effect of interwall interaction on the electronic structure of double-walled carbon nanotubes. Nanotechnology 26 (16):165201. doi:10.1088/0957-4484/26/16/165201.
  • Stobinski, L., B. Lesiak, L. Kövér, J. Tóth, S. Biniak, G. Trykowski, and J. Judek. 2010. Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. Journal of Alloys and Compounds 501 (1):77–84. doi:10.1016/j.jallcom.2010.04.032.
  • Strano, M. S., C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. Shan, C. Kittrell, R. H. Hauge, J. M. Tour, and R. E. Smalley. 2003. Electronic structure control of single-walled carbon nanotube functionalization. Science 301 (5639):1519–22. doi:10.1126/science.1087691.
  • Sun, Y. -P., F. Kefu, Y. Lin, and W. Huang. 2002. Functionalized carbon nanotubes: Properties and applications. Accounts of Chemical Research 35 (12):1096–104. doi:10.1021/ar010160v.
  • Sun, Y., J. Sun, M. Liu, and Q. Chen. 2007. Mechanical strength of carbon nanotube–nickel nanocomposites. Nanotechnology 18 (50):505704. doi:10.1088/0957-4484/18/50/505704.
  • Swetha, C. 2022. Carbon nanotube electronics. In Carbon nanotubes, 209–34. Apple Academic Press.
  • Symeonidou, E.R., A. D. Nordin, W. David Hairston, and D. P. Ferris. 2018. Effects of cable sway, electrode surface area, and electrode mass on electroencephalography signal quality during motion. Sensors 18 (4):1073. doi:10.3390/s18041073.
  • Tange, M., T. Okazaki, and S. Iijima. 2011. Selective extraction of large-diameter single-wall carbon nanotubes with specific chiral indices by poly (9, 9-dioctylfluorene-alt-benzothiadiazole). Journal of the American Chemical Society 133 (31):11908–11. doi:10.1021/ja204698d.
  • Tian, Y., H. Du, M. Zhang, Y. Zheng, Q. Guo, H. Zhang, J. Luo, and X. Zhang. 2019. Microwave synthesis of MoS 2/MoO 2@ CNT nanocomposites with excellent cycling stability for supercapacitor electrodes. Journal of Materials Chemistry C 7 (31):9545–55. doi:10.1039/C9TC02391G.
  • Tounsi, A., S. Benguediab, A. Semmah, and M. Zidour. 2013. Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes. Advances in Nano Research 1 (1):1. doi:10.12989/anr.2013.1.1.001.
  • Vangari, M., T. Pryor, and L. Jiang. 2013. Supercapacitors: Review of materials. Journal of Energy Engineering (Ç) 139 (2):72–79. doi:10.1061/(ASCE)EY.1943-7897.0000102.
  • Vashist, A., A. Kaushik, A. Vashist, V. Sagar, Y. G. Anujit Ghosal, S. Ahmad, and M. Nair. 2018. Advances in carbon nanotubes–hydrogel hybrids in nanomedicine for therapeutics. Advanced Healthcare Materials 7 (9):1701213. doi:10.1002/adhm.201701213.
  • Wang, H., Z. Cheng, Y. Liao, J. Li, J. Weber, A. Thomas, and C. F. J. Faul. 2017. Conjugated microporous polycarbazole networks as precursors for nitrogen-enriched microporous carbons for CO2 storage and electrochemical capacitors. Chemistry of Materials 29 (11):4885–93. doi:10.1021/acs.chemmater.7b00857.
  • Wang, Y., S. Gong, D. Dong, Y. Zhao, L. Wei Yap, Q. Shi, A. Tiance, Y. Ling, G. P. Simon, and W. Cheng. 2018. Self-assembled gold nanorime mesh conductors for invisible stretchable supercapacitors. Nanoscale 10 (34):15948–55. doi:10.1039/C8NR04256J.
  • Wang, D., C. Han, F. Mo, Q. Yang, Y. Zhao, Q. Li, G. Liang, B. Dong, and C. Zhi. 2020. Energy density issues of flexible energy storage devices. Energy Storage Materials 28:264–92. doi:10.1016/j.ensm.2020.03.006.
  • Wang, Y., X. Wu, Y. Han, and T. Li. 2021. Flexible supercapacitor: Overview and outlooks. Journal of Energy Storage 42:103053. doi:10.1016/j.est.2021.103053.
  • Wang, B., H. Xin, X. Li, J. Cheng, G. Yang, and F. Nie. 2014. Mesoporous CNT@ TiO2-C nanocable with extremely durable high rate capability for lithium-ion battery anodes. Scientific Reports 4 (1):1–7. doi:10.1038/srep03729.
  • Wang, Z., M. Zhu, Z. Pei, Q. Xue, L. Hongfei, Y. Huang, and C. Zhi. 2020. Polymers for supercapacitors: Boosting the development of the flexible and wearable energy storage. Materials Science and Engineering: R: Reports 139:100520. doi:10.1016/j.mser.2019.100520.
  • Wavhal, B. A., M. Ghosh, S. Sharma, S. Kurungot, and S. Asha. 2021. A high-voltage non-aqueous hybrid supercapacitor based on the N2200 polymer supported over multiwalled carbon nanotubes. Nanoscale 13 (28):12314–26. doi:10.1039/D1NR01422F.
  • Weber, J., and A. Thomas. 2008. Toward stable interfaces in conjugated polymers: Microporous Poly(p-phenylene) and Poly(phenyleneethynylene) based on a spirobifluorene building block. Journal of the American Chemical Society 130 (20):6334–35. doi:10.1021/ja801691x.
  • Wei, J., H. Zhu, B. Jiang, L. Ci, and D. Wu. 2003. Electronic properties of double-walled carbon nanotube films. Carbon 41 (13):2495–500. doi:10.1016/S0008-6223(03)00295-1.
  • WenXing, B., Z. ChangChun, and C. WanZhao. 2004. Simulation of Young’s modulus of single-walled carbon nanotubes by molecular dynamics. Physica B, Condensed Matter 352 (1–4):156–63. doi:10.1016/j.physb.2004.07.005.
  • Wimalasiri, Y., and L. Zou. 2013. Carbon nanotube/graphene composite for enhanced capacitive deionization performance. Carbon 59:464–71. doi:10.1016/j.carbon.2013.03.040.
  • Wu, L., Y. Han, Q. Zhao, and L. Zhang. 2021. Effects of chiral indices on the atomic arrangements and electronic properties of Si double-walled nanotubes (6, min)@(9, mout)(min= 0 to 6, mout= 0 to 9) by SCC-DFTB calculations. Materials Science in Semiconductor Processing 129:105775. doi:10.1016/j.mssp.2021.105775.
  • Xia, Y., M. Yoshio, and H. Noguchi. 2006. Improved electrochemical performance of LiFePO4 by increasing its specific surface area. Electrochimica acta 52 (1):240–45. doi:10.1016/j.electacta.2006.05.002.
  • Xie, J., P. Yang, Y. Wang, T. Qi, Y. Lei, and C. M. Li. 2018. Puzzles and confusions in supercapacitor and battery: Theory and solutions. Journal of Power Sources 401:213–23. doi:10.1016/j.jpowsour.2018.08.090.
  • Xu, R., A. Zverev, A. Hung, C. Shen, L. Irie, G. Ding, M. Whitmeyer, L. Ren, B. Griffin, J. Melcher, et al. 2018. Kirigami-inspired, highly stretchable micro-supercapacitor patches fabricated by laser conversion and cutting. Microsystems & Nanoengineering 4 (1):1–10. doi:10.1038/s41378-018-0036-z.
  • Yang, H. 2020. A comparative study of supercapacitor capacitance characterization methods. Journal of Energy Storage 29:101316. doi:10.1016/j.est.2020.101316.
  • Yang, D., D. Tian, C. Xue, F. Gao, Y. Liu, H. Li, Y. Bao, J. Liang, Z. Zhao, and J. Qiu. 2018. Tuned fabrication of the aligned and opened CNT membrane with exceptionally high permeability and selectivity for bioalcohol recovery. Nano Letters 18 (10):6150–56. doi:10.1021/acs.nanolett.8b01831.
  • Yeh, M. -K., T. -H. Hsieh, and N. -H. Tai. 2008. Fabrication and mechanical properties of multi-walled carbon nanotubes/epoxy nanocomposites. Materials Science and Engineering A 483-484:289–92. doi:10.1016/j.msea.2006.09.138.
  • Yu, Z., L. Tetard, L. Zhai, and J. Thomas. 2015. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy & Environmental Science 8 (3):702–30. doi:10.1039/C4EE03229B.
  • Zaheer, M. M., M. Shamsuddin Jafri, and R. Sharma. 2019. Effect of diameter of MWCNT reinforcements on the mechanical properties of cement composites. Advanced Concrete Construction 8 (3):207–15.
  • Zaporotskova, I. V., N. P. Boroznina, Y. N. Parkhomenko, and L. V. Kozhitov. 2016. Carbon nanotubes: Sensor properties. A review. Modern Electronic Materials 2 (4):95–105. doi:10.1016/j.moem.2017.02.002.
  • Zhang, L., R. Jamal, Q. Zhao, M. Wang, and T. Abdiryim. 2015. Preparation of PEDOT/GO, PEDOT/MnO2, and PEDOT/GO/MnO2 nanocomposites and their application in catalytic degradation of methylene blue. Nanoscale Research Letters 10 (1):148. doi:10.1186/s11671-015-0859-6.
  • Zhang, C. -L., and H. -S. Shen. 2008. Predicting the elastic properties of double-walled carbon nanotubes by molecular dynamics simulation. Journal of Physics D: Applied Physics 41 (5):055404. doi:10.1088/0022-3727/41/5/055404.
  • Zhang, Y. Y., V. B. C. Tan, and C. M. Wang. 2007. Effect of strain rate on the buckling behavior of single-and double-walled carbon nanotubes. Carbon 45 (3):514–23. doi:10.1016/j.carbon.2006.10.020.
  • Zhang, T., Z. S. Yuan, and L. H. Tan. 2011. Exact geometric relationships, symmetry breaking and structural stability for single-walled carbon nanotubes. Nano-Micro Letters 3 (4):228–35. doi:10.1007/BF03353677.
  • Zhang, Y., H. Zhang, F. Jiang, W. Zhou, R. Wang, J. Xu, X. Duan, Y. Wu, and Y. Ding. 2020. Electrochemical assembly of homogenized poly(3,4-ethylenedioxythiophene methanol)/SWCNT nano-networks and their high performances for supercapacitor electrodes. Ionics 26 (7):3631–42. doi:10.1007/s11581-020-03475-y.
  • Zhao, Q., G. Wang, K. Yan, J. Yan, and J. Wang. 2015. Binder‐free porous PEDOT electrodes for flexible supercapacitors. Journal of Applied Polymer Science 132 (41). doi:10.1002/app.42549.
  • Zhou, M., Y. Li, Q. Gong, Z. Xia, Y. Yang, X. Liu, J. Wang, and Q. Gao. 2019. Polythiophene grafted onto single-wall carbon nanotubes through Oligo(ethylene oxide) linkages for supercapacitor devices with enhanced electrochemical performance. ChemElectrochem 6 (17):4595–607. doi:10.1002/celc.201901074.
  • Zhou, Z., M. Steigerwald, M. Hybertsen, L. Brus, and R. A. Friesner. 2004. Electronic structure of tubular aromatic molecules derived from the metallic (5, 5) armchair single wall carbon nanotube. Journal of the American Chemical Society 126 (11):3597–607. doi:10.1021/ja039294p.
  • Zólyomi, V., Á. Rusznyák, J. Kürti, Á. Gali, F. Simon, H. Kuzmany, Á. Szabados, and P. R. Surján. 2006. Semiconductor‐to‐metal transition of double walled carbon nanotubes induced by inter‐shell interaction. Physica Status Solidi (B) 243 (13):3476–79. doi:10.1002/pssb.200669161.