602
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Selection of Knitted Fabrics Using a Hybrid BBWM-PFTOPSIS Method

ORCID Icon & ORCID Icon

References

  • Adamu, B. F., and J. Gao. 2022. Comfort related woven fabric transmission properties made of cotton and nylon. Fashion and Textiles 9 (1):8. doi:10.1186/s40691-021-00285-2.
  • Afghah, M., S. M. Sajadi, S. M. Razavi, and M. Taghizadeh-Yazdi. 2023. Hard dimensions evaluation in sustainable supply chain management for environmentally adaptive and mitigated adverse eco-effect environmental policies. Business Strategy and the Environment n/a (n/a):1–25. doi:10.1002/bse.3407.
  • Agheli, B., M. Adabitabar Firozja, and H. Garg. 2022. Similarity measure for Pythagorean fuzzy sets and application on multiple criteria decision making. Journal of Statistics and Management Systems 25 (4):749–69. doi:10.1080/09720510.2021.1891699.
  • Ahmed, T., C. L. Karmaker, S. B. Nasir, A. M. Md, and S. K. Paul. 2023. Modeling the artificial intelligence-based imperatives of industry 5.0 towards resilient supply chains: A post-COVID-19 pandemic perspective. Computers & Industrial Engineering 177 (March):109055. doi:10.1016/j.cie.2023.109055.
  • Akram, M., A. Luqman, and J. C. R. Alcantud. 2022. An integrated ELECTRE-I approach for risk evaluation with hesitant Pythagorean fuzzy information. Expert Systems with Applications 200 (August):116945. doi:10.1016/j.eswa.2022.116945.
  • Akram, M., U. Noreen, and D. Pamucar. 2023. Extended PROMETHEE approach with 2-tuple linguistic m-polar fuzzy sets for selection of elliptical cardio machine. Expert Systems 40 (3):e13178. doi:10.1111/exsy.13178.
  • Arora, H. D., and A. Naithani. 2022a. Applications of similarity measures for Pythagorean fuzzy sets based on sine function in decision-making problems. Journal of Applied Mathematics & Informatics 40 (5_6):897–914. doi:10.14317/jami.2022.897.
  • Arora, H. D., and A. Naithani. 2022b. Logarithmic similarity measures on Pythagorean fuzzy sets in the admission process. Operations Research and Decisions 32 (1). doi: 10.37190/ord220101.
  • Arora, H. D., and A. Naithani. 2022c. Performance of exponential similarity measures in supply of commodities in containment zones during COVID-19 pandemic under Pythagorean fuzzy sets. International Journal of Intelligent Systems 37 (12):11815–29. doi:10.1002/int.23064.
  • Ashraf, S., U. Attaullah, M. Naeem, A. Khan, N. Rehman, and M. K. Pandit. 2023. Novel information measures for Fermatean fuzzy sets and their applications to pattern recognition and medical diagnosis. Computational Intelligence and Neuroscience 2023 (March):e9273239. doi:10.1155/2023/9273239.
  • Atthirawong, W., W. Panprung, and P. Wanitjirattikal. 2023. An integrated factor analysis-technique for order preference by similarity to ideal solution for location decision in ASEAN region: A case study of Thai fabric manufacturing plant. Current Applied Science and Technology 23 (1):1–16. doi:10.55003/cast.2022.01.23.012.
  • Bait, S., S. Marino Lauria, and M. M. Schiraldi. 2022. A risk-based hybrid multi-criteria approach to support managers in the industrial location selection in developing countries: A case study of textile sector in Africa. Journal of Cleaner Production 335 (February):130325. doi:10.1016/j.jclepro.2021.130325.
  • Büyüközkan, G., and F. Göçer. 2021. A novel approach integrating AHP and COPRAS under Pythagorean fuzzy sets for digital supply chain partner selection. IEEE Transactions on Engineering Management 68 (5):1486–503. doi:10.1109/TEM.2019.2907673.
  • Çeven, E. K., and G. K. Günaydın. 2021. Evaluation of some comfort and mechanical properties of knitted fabrics made of different regenerated cellulosic fibres. Fibers and Polymers 22 (2):567–77. doi:10.1007/s12221-021-0246-0.
  • Chen, C., Z. Du, W. Yu, and T. Dias. 2018. Analysis of physical properties and structure design of weft-knitted spacer fabric with high porosity. Textile Research Journal 88 (1):59–68. doi:10.1177/0040517516676060.
  • Chen, Z., X. Wang, J. Peng, H. Zhang, and J. Wang. 2020. An integrated probabilistic linguistic projection method for MCGDM based on ELECTRE III and the weighted convex median voting rule. Expert Systems 37 (6):e12593. doi:10.1111/exsy.12593.
  • Danişan, T., E. Özcan, and T. Eren. 2022. Personnel selection with multi-criteria decision making methods in the ready-to-wear sector. Tehnički Vjesnik 29 (4):1339–47. doi:10.17559/TV-20210816220137.
  • Debnath, B., M. S. Shakur, A. B. M. M. Bari, and C. L. Karmaker. 2023. A Bayesian best–worst approach for assessing the critical success factors in sustainable lean manufacturing. Decision Analytics Journal 6 (March):100157. doi:10.1016/j.dajour.2022.100157.
  • Deli, İ., V. Uluçay, and Y. Polat. 2022. N-valued neutrosophic trapezoidal numbers with similarity measures and application to multi-criteria decision-making problems. Journal of Ambient Intelligence and Humanized Computing 13 (9):4493–518. doi:10.1007/s12652-021-03294-7.
  • Deveci, M., I. Gokasar, D. Pamucar, A. A. Zaidan, X. Wen, and B. B. Gupta. 2023. Evaluation of cooperative intelligent transportation system scenarios for resilience in transportation using type-2 neutrosophic fuzzy VIKOR. Transportation Research Part A: Policy & Practice 172 (June):103666. doi:10.1016/j.tra.2023.103666.
  • Deveci, M., E. A. Varouchakis, P. R. Brito-Parada, A. R. Mishra, P. Rani, M. Bolgkoranou, and M. Galetakis. 2023. Evaluation of risks impeding sustainable mining using Fermatean fuzzy score function based SWARA method. Applied Soft Computing 139 (May):110220. doi:10.1016/j.asoc.2023.110220.
  • Eryuruk, S. H. 2021. Analyzing thermophysiological comfort and moisture management behavior of cotton denim fabrics. AUTEX Research Journal 21 (2):248–54. doi:10.2478/aut-2019-0073.
  • Farhadinia, B. 2022. Similarity-based multi-criteria decision making technique of Pythagorean fuzzy sets. Artificial Intelligence Review 55 (3):2103–48. doi:10.1007/s10462-021-10054-8.
  • Garg, H. 2016. A novel correlation coefficients between Pythagorean fuzzy sets and its applications to decision-making processes. International Journal of Intelligent Systems 31 (12):1234–52. doi:10.1002/int.21827.
  • Garg, H., Z. Ali, T. Mahmood, and M. R. Ali. 2023. TOPSIS-method based on generalized dice similarity measures with hamy mean operators and its application to decision-making process. Alexandria Engineering Journal 65 (February):383–97. doi:10.1016/j.aej.2022.10.043.
  • Garg, S., M. P. Sikka, and V. K. Midha. 2022. Review on fabric thermal comfort in wet conditions. Research Journal of Textile and Apparel. doi:10.1108/RJTA-03-2022-0034.
  • Gul, M., M. Yucesan, and M. F. Ak. 2022. Control measure prioritization in Fine − Kinney-based risk assessment: A Bayesian BWM-Fuzzy VIKOR combined approach in an oil station. Environmental Science and Pollution Research 29 (39):59385–402. doi:10.1007/s11356-022-19454-x.
  • Gupta, H., M. Kharub, K. Shreshth, A. Kumar, D. Huisingh, and A. Kumar. 2023. Evaluation of strategies to manage risks in smart, sustainable agri-logistics sector: A Bayesian-based group decision-making approach. Business Strategy and the Environment n/a (n/a). doi:10.1002/bse.3368.
  • Hajiaghaei-Keshteli, M., Z. Cenk, B. Erdebilli, Y. Selim Özdemir, and F. Gholian-Jouybari. 2023. Pythagorean fuzzy TOPSIS method for green supplier selection in the food industry. Expert Systems with Applications 224 (August):120036. doi:10.1016/j.eswa.2023.120036.
  • Hashemkhani Zolfani, S., R. Bazrafshan, F. Ecer, and Ç. Karamaşa. 2022. The suitability-feasibility-acceptability strategy integrated with Bayesian BWM-MARCOS methods to determine the optimal lithium battery plant located in South America. Mathematics 10 (14):2401. doi:10.3390/math10142401.
  • Hooshangi, N., N. Mahdizadeh Gharakhanlou, and S. R. Ghaffari Razin. 2023. Evaluation of potential sites in Iran to localize solar farms using a GIS-based Fermatean fuzzy TOPSIS. Journal of Cleaner Production 384 (January):135481. doi:10.1016/j.jclepro.2022.135481.
  • Hsu, C.-C., Y.-W. Kuo, and J. J. H. Liou. 2023. A hybrid model for evaluating the bikeability of urban bicycle systems. Axioms 12 (2):155. doi:10.3390/axioms12020155.
  • Huang, C., M. Lin, and Z. Xu. 2020. Pythagorean fuzzy MULTIMOORA method based on distance measure and score function: Its application in multicriteria decision making process. Knowledge and Information Systems 62 (11):4373–406. doi:10.1007/s10115-020-01491-y.
  • Hussain, Z. 2021. Similarity measures of Pythagorean fuzzy sets with applications to pattern recognition and multicriteria decision making with Pythagorean TOPSIS. Journal of Mechanics of Continua and Mathematical Sciences June. doi:10.26782/jmcms.2021.06.00006.
  • Hussain, A., K. Ullah, M. Mubasher, T. Senapati, and S. Moslem. 2023. Interval-valued Pythagorean fuzzy information aggregation based on Aczel-Alsina operations and their application in multiple attribute decision making. IEEE Access, 1–1. doi:10.1109/ACCESS.2023.3244612.
  • Hussian, Z., and M.-S. Yang. 2019. Distance and similarity measures of Pythagorean fuzzy sets based on the Hausdorff metric with application to fuzzy TOPSIS. International Journal of Intelligent Systems 34 (10):2633–54. doi:10.1002/int.22169.
  • Iftikhar, F., Z. Ali, T. Hussain, A. Nazir, and D. C. Adolphe. 2021. Influence of yarn count and cover factor on mechanical, comfort, aesthetic and hand properties of ladies’ summer apparel fabrics. Journal of Natural Fibers 18 (11):1592–603. doi:10.1080/15440478.2019.1692322.
  • Jun, Y. 2011. Cosine similarity measures for intuitionistic fuzzy sets and their applications. Mathematical and Computer Modelling 53 (1):91–97. doi:10.1016/j.mcm.2010.07.022.
  • Khalil, S. M., and M. S. Sharqi. 2023. Some applications in decision-making using cosine maps and the relevance of the Pythagorean fuzzy. Engineering Applications of Artificial Intelligence 122 (June):106089. doi:10.1016/j.engappai.2023.106089.
  • Khan, M. S. A., L. C. Etonyeaku, G. Kabir, M. Billah, and S. Dutta. 2022. Bridge infrastructure resilience assessment against seismic hazard using Bayesian best worst method. Canadian Journal of Civil Engineering 49 (11):1669–85. doi:10.1139/cjce-2021-0503.
  • Kirişci, M. 2023. New cosine similarity and distance measures for Fermatean fuzzy sets and TOPSIS approach. Knowledge and Information Systems 65 (2):855–68. doi:10.1007/s10115-022-01776-4.
  • Krithika, S. M. U., C. Prakash, M. B. Sampath, and M. S. Kumar. 2020. Thermal comfort properties of bi-layer knitted fabrics. Fibres & Textiles in Eastern Europe 5 (143):50–55. doi:10.5604/01.3001.0014.2384.
  • Kumar, K., and S.-M. Chen. 2023. Group decision making based on entropy measure of Pythagorean fuzzy sets and Pythagorean fuzzy weighted arithmetic mean aggregation operator of Pythagorean fuzzy numbers. Information Sciences 624 (May):361–77. doi:10.1016/j.ins.2022.12.064.
  • Kumar, R., and S. Kumar. 2023. A novel intuitionistic fuzzy similarity measure with applications in decision-making, pattern recognition, and clustering problems. Granular Computing February. doi:10.1007/s41066-023-00366-1.
  • Lahane, S., R. Kant, R. Shankar, and S. K. Patil. 2023. Circular supply chain implementation performance measurement framework: A comparative case analysis. Production Planning & Control 0 (0):1–20. doi:10.1080/09537287.2023.2180684.
  • Lahdhiri, M., A. Babay, and M. Jmali. 2022. Multi-criteria decision making using hybrid methods for supplier selection in the clothing industry. Fibres & Textiles in Eastern Europe 151 (2):23–34. doi:10.2478/ftee-2022-0004.
  • Limeneh, D. Y., M. Ayele, T. Tesfaye, E. Z. Liyew, and A. F. Tesema. 2022. Effect of weave structure on comfort property of fabric. Journal of Natural Fibers 19 (11):4148–55. doi:10.1080/15440478.2020.1855288.
  • Lin, M., C. Huang, and Z. Xu. 2019. TOPSIS method based on correlation coefficient and entropy measure for linguistic Pythagorean fuzzy sets and its application to multiple attribute decision making. Complexity 2019:1–16. doi:10.1155/2019/6967390.
  • Li, H., L. Su, Y. Cao, and L. Lv. 2019. A Pythagorean fuzzy TOPSIS method based on similarity measure and its application to project delivery system selection. Journal of Intelligent & Fuzzy Systems 37 (5):7059–71. doi:10.3233/JIFS-181690.
  • Liu, M., Y. Li, Y. Xu, L. Chen, Q. Wang, Q. Ma, and X. Yuan. 2023. A multi-criteria group decision making framework for sustainability evaluation of sintering flue gas treatment technologies in the iron and steel industry. Journal of Cleaner Production 389 (February):136048. doi:10.1016/j.jclepro.2023.136048.
  • Li, J., L. Wen, G. Wei, J. Wu, and C. Wei. 2021. New similarity and distance measures of Pythagorean fuzzy sets and its application to selection of advertising platforms. Journal of Intelligent & Fuzzy Systems 40 (3):5403–19. doi:10.3233/JIFS-202212.
  • Lu, B. 2022. Design of knitted garment design model based on mathematical image theory. Journal of Sensors 2022 (March):1–13. doi:10.1155/2022/3864256.
  • Madhavi, S., N. C. Santhosh, S. Rajkumar, and R. Praveen. 2023. Pythagorean Fuzzy Sets-based VIKOR and TOPSIS-based multi-criteria decision-making model for mitigating resource deletion attacks in WSNs. Journal of Intelligent & Fuzzy Systems Preprint (Preprint): 1–19. doi:10.3233/JIFS-224141.
  • Mahanta, J., and S. Panda. 2021. Distance measure for Pythagorean fuzzy sets with varied applications. Neural Computing and Applications 33 (24):17161–71. doi:10.1007/s00521-021-06308-9.
  • Menekse, A., A. V. Ertemel, H. C. Akdag, A. Gorener, and I. Badi. 2023. Additive manufacturing process selection for automotive industry using Pythagorean fuzzy CRITIC EDAS. PLOS ONE 18 (3):e0282676. doi:10.1371/journal.pone.0282676.
  • Mishra, A. R., P. Rani, F. Cavallaro, and A. Mardani. 2022. A similarity measure-based Pythagorean fuzzy additive ratio assessment approach and its application to multi-criteria sustainable biomass crop selection. Applied Soft Computing 125 (August):109201. doi:10.1016/j.asoc.2022.109201.
  • Mitra, A. 2022. Cotton fibre selection based on quality value using measurement of alternatives and ranking according to compromise solution (MARCOS) method. Research Journal of Textile and Apparel. doi:10.1108/RJTA-03-2022-0030.
  • Mitra, A. 2023. Selection of Khadi fabrics for optimal comfort properties using multi-criteria decision-making technique. Research Journal of Textile and Apparel 27 (1):118–40. doi:10.1108/RJTA-08-2021-0108.
  • Mitra, A., A. Majumdar, A. Ghosh, P. K. Majumdar, and D. Bannerjee. 2015. Selection of handloom fabrics for summer clothing using multi-criteria decision making techniques. Journal of Natural Fibers 12 (1):61–71. doi:10.1080/15440478.2014.892464.
  • Modares, A., N. M. Farimani, and V. B. Emroozi. 2023. A new model to design the suppliers portfolio in newsvendor problem based on product reliability. Journal of Industrial and Management Optimization 19 (–6):4112–51. doi:10.3934/jimo.2022124.
  • Modares, A., M. Kazemi, V. B. Emroozi, and P. Roozkhosh. March 2023. A new supply chain design to solve supplier selection based on internet of things and delivery reliability. Journal of Industrial and Management Optimization 19 :7993–8028. doi: 10.3934/jimo.2023028.
  • Mohammadi, M., and J. Rezaei. 2020. Bayesian best-worst method: A probabilistic group decision making model. Omega 96 (October):102075. doi:10.1016/j.omega.2019.06.001.
  • Munim, Z. H., M. M. H. Chowdhury, H. M. Tusher, and T. Notteboom. 2023. Towards a prioritization of alternative energy sources for sustainable shipping. Marine Policy 152 (June):105579. doi:10.1016/j.marpol.2023.105579.
  • Noman, M. T., M. Petru, N. Amor, and P. Louda. 2020. Thermophysiological comfort of zinc oxide nanoparticles coated woven fabrics. Scientific Reports 10 (1):21080. doi:10.1038/s41598-020-78305-2.
  • Oğlakcioğlu, N., and A. Marmarali. 2007. Thermal comfort properties of some knitted structures. Fibres & Textiles in Eastern Europe 15 (5–6):64–65.
  • Okur, N., and T. Ercan. 2022. Evaluating retail efficiency using DEA and AHP: A case in the Turkish apparel retail industry. Journal of Fashion Marketing & Management 27 (1):138–60. doi:10.1108/JFMM-06-2021-0154.
  • Olgun, M., E. Türkarslan, J. Ye, and M. Ünver. 2022. Single and interval-valued hybrid Enthalpy fuzzy sets and a TOPSIS approach for multicriteria group decision making. Mathematical Problems in Engineering 2022 (April):e2501321. doi:10.1155/2022/2501321.
  • Özlü, Ş., and F. Karaaslan. 2022. Hybrid similarity measures of single-valued neutrosophic type-2 fuzzy sets and their application to MCDM based on TOPSIS. Soft Computing 26 (9):4059–80. doi:10.1007/s00500-022-06824-3.
  • Pamučar, D., A. Puška, V. Simić, I. Stojanović, and M. Deveci. 2023. Selection of healthcare waste management treatment using fuzzy rough numbers and Aczel–Alsina Function. Engineering Applications of Artificial Intelligence 121 (May):106025. doi:10.1016/j.engappai.2023.106025.
  • Peng, X., H. Yuan, and Y. Yang. 2017. Pythagorean fuzzy information measures and their applications. International Journal of Intelligent Systems 32 (10):991–1029. doi:10.1002/int.21880.
  • Qahtan, S., H. A. Alsattar, A. A. Zaidan, M. Deveci, D. Pamucar, and D. Delen. 2023. Performance assessment of sustainable transportation in the shipping industry using a q-rung orthopair fuzzy rough sets-based decision making methodology. Expert Systems with Applications 223 (August):119958. doi:10.1016/j.eswa.2023.119958.
  • Qahtan, S., H. A. Alsattar, A. A. Zaidan, M. Deveci, D. Pamucar, and L. Martinez. 2023. A comparative study of evaluating and benchmarking sign language recognition system-based wearable sensory devices using a single fuzzy set. Knowledge-Based Systems 269 (June):110519. doi:10.1016/j.knosys.2023.110519.
  • Raja Balasaraswathi, S., and R. Rathinamoorthy. 2022. Effect of fabric properties on microfiber shedding from synthetic textiles. The Journal of the Textile Institute 113 (5):789–809. doi:10.1080/00405000.2021.1906038.
  • Rani, P., A. R. Mishra, G. Rezaei, H. Liao, and A. Mardani. 2020. Extended Pythagorean fuzzy TOPSIS method based on similarity measure for sustainable recycling partner selection. International Journal of Fuzzy Systems 22 (2):735–47. doi:10.1007/s40815-019-00689-9.
  • Rezaei, J. 2015. Best-worst multi-criteria decision-making method. Omega 53:49–57. doi:10.1016/j.omega.2014.11.009.
  • Saeidi, P., A. Mardani, A. R. Mishra, V. E. Cajas Cajas, and M. G. Carvajal. 2022. Evaluate sustainable human resource management in the manufacturing companies using an extended Pythagorean fuzzy SWARA-TOPSIS method. Journal of Cleaner Production 370 (October):133380. doi:10.1016/j.jclepro.2022.133380.
  • Saikia, B., P. Dutta, and P. Talukdar. March 2023. An advanced similarity measure for Pythagorean fuzzy sets and its applications in transportation problem. Artificial Intelligence Review. doi: 10.1007/s10462-023-10421-7.
  • Salopek Čubrić, I., V. M. Potočić Matković, Ž. Pavlović, and A. Pavko Čuden. 2022. Material and structural functionalization of knitted fabrics for sportswear. Materials 15 (9):3306. doi:10.3390/ma15093306.
  • Saner, H. S., M. Yucesan, and M. Gul. 2022. A Bayesian BWM and VIKOR-based model for assessing hospital preparedness in the face of disasters. Natural Hazards 111 (2):1603–35. doi:10.1007/s11069-021-05108-7.
  • Sarkar, B., and A. Biswas. 2020. A unified method for Pythagorean fuzzy multicriteria group decision-making using entropy measure, linear programming and extended technique for ordering preference by similarity to ideal solution. Soft Computing 24 (7):5333–44. doi:10.1007/s00500-019-04282-y.
  • Sarkar, B., and A. Biswas. 2021. Pythagorean fuzzy AHP-TOPSIS integrated approach for transportation management through a new distance measure. Soft Computing 25 (5):4073–89. doi:10.1007/s00500-020-05433-2.
  • Simsek, E., Y. E. Demirel, E. Ozturk, and M. Kitis. 2022. Use of multi-criteria decision models for optimization of selecting the most appropriate best available techniques in cleaner production applications: A case study in a textile industry. Journal of Cleaner Production 335 (February):130311. doi:10.1016/j.jclepro.2021.130311.
  • Singh, T., P. Pattnaik, C. I. Pruncu, A. Tiwari, and G. Fekete. 2020. Selection of natural fibers based brake friction composites using hybrid ELECTRE-entropy optimization technique. Polymer Testing 89 (September):106614. doi:10.1016/j.polymertesting.2020.106614.
  • Verma, R., and A. Mittal. 2023. Multiple attribute group decision-making based on novel probabilistic ordered weighted cosine similarity operators with Pythagorean fuzzy information. Granular Computing 8 (1):111–29. doi:10.1007/s41066-022-00318-1.
  • Wang, J., H. Gao, and G. Wei. 2019. The generalized Dice similarity measures for Pythagorean fuzzy multiple attribute group decision making. International Journal of Intelligent Systems 34 (6):1158–83. doi:10.1002/int.22090.
  • Wei, G., and Y. Wei. 2018. Similarity measures of Pythagorean fuzzy sets based on the cosine function and their applications. International Journal of Intelligent Systems 33 (3):634–52. doi:10.1002/int.21965.
  • Yager, R. R. 2013. Pythagorean fuzzy subsets. In Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 57–61. Edmonton, Canada: IEEE. doi:10.1109/IFSA-NAFIPS.2013.6608375.
  • Yager, R. R., and A. M. Abbasov. 2013. Pythagorean membership grades, complex numbers, and decision making. International Journal of Intelligent Systems 28 (5):436–52. doi:10.1002/int.21584.
  • Yalcin Kavus, B., E. Ayyildiz, P. Gulum Tas, and A. Taskin. 2022. A hybrid Bayesian BWM and Pythagorean fuzzy WASPAS-based decision-making framework for parcel locker location selection problem. Environmental Science and Pollution Research November. doi:10.1007/s11356-022-23965-y.
  • Yang, C.-C., C.-C. Shen, T.-Y. Mao, H.-W. Lo, and C.-J. Pai. 2022. A hybrid model for assessing the performance of medical tourism: Integration of Bayesian BWM and Grey PROMETHEE-AL. Journal of Function Spaces 2022 (February):e5745499. doi:10.1155/2022/5745499.
  • Yang, Y., H. Wang, Y. Zhao, L. Zhang, and Y. Li. 2022. Three-way decision approach for water ecological security evaluation and regulation coupled with VIKOR: A case study in Beijing-Tianjin-Hebei region. Journal of Cleaner Production 379 (December):134666. doi:10.1016/j.jclepro.2022.134666.
  • Ye, J., and T.-Y. Chen. 2022a. Fabric selection based on sine trigonometric aggregation operators under Pythagorean fuzzy uncertainty. Journal of Natural Fibers 19 (16):13928–42. doi:10.1080/15440478.2022.2113847.
  • Ye, J., and T.-Y. Chen. 2022b. Pythagorean fuzzy sets combined with the PROMETHEE method for the selection of cotton woven fabric. Journal of Natural Fibers 19 (16):12447–61. doi:10.1080/15440478.2022.2072993.
  • Ye, J., and T.-Y. Chen. 2022c. Selection of cotton fabrics using Pythagorean fuzzy TOPSIS approach. Journal of Natural Fibers 19 (14):9085–100. doi:10.1080/15440478.2021.1982439.
  • Zhang, X. 2016. A novel approach based on similarity measure for Pythagorean fuzzy multiple criteria group decision making. International Journal of Intelligent Systems 31 (6):593–611. doi:10.1002/int.21796.
  • Zhang, X., and Z. Xu. 2014. Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. International Journal of Intelligent Systems 29 (12):1061–78. doi:10.1002/int.21676.
  • Zhao, W., H. Lu, and C. Li. 2021. Composite hollow fiber membrane dehumidification: A review on membrane module, moisture permeability and self-cleaning performance. International Journal of Heat and Mass Transfer 181 (December):121832. doi:10.1016/j.ijheatmasstransfer.2021.121832.
  • Zulqarnain, R. M., X. L. Xin, I. Siddique, W. A. Khan, and M. A. Yousif. 2021. TOPSIS method based on correlation coefficient under pythagorean fuzzy soft environment and its application towards green supply chain management. Sustainability 13 (4):1642. doi:10.3390/su13041642.