528
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of Alkali Treatment on Microstructure Transformation and Mechanical Properties of Palm-Fiber Cell Wall

, , &

References

  • Ajouguim, S., K. Abdelouahdi, M. Waqif, M. Stefanidou, and L. Saâdi. 2019. Modifications of Alfa fibers by alkali and hydrothermal treatment. Cellulose 26 (3):1503–10. doi:10.1007/s10570-018-2181-9.
  • Akerholm, M., and L. Salmen. 2003. The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR spectroscopy. Holzforschung 57 (5):459–65. doi:10.1515/HF.2003.069.
  • Boopathi, L., P. S. Sampath, and K. Mylsamy. 2012. Investigation of physical, chemical and mechanical properties of raw and alkali treated Borassus fruit fiber. Composites Part B: Engineering 43 (8):3044–52. doi:10.1016/j.compositesb.2012.05.002.
  • Cai, M., H. Takagi, A. N. Nakagaito, M. Katoh, T. Ueki, G. I. N. Waterhouse, and Y. Li. 2015. Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Industrial Crops and Products 65:27–35. doi:10.1016/j.indcrop.2014.11.048.
  • Cao, C., Z. Yang, L. Han, X. Jiang, and G. Ji. 2014. Study on in situ analysis of cellulose, hemicelluloses and lignin distribution linked to tissue structure of crop stalk internodal transverse section based on FTIR microspectroscopic imaging. Cellulose (London) 22 (1):139–49. doi:10.1007/s10570-014-0525-7.
  • Chabbert, B., C. Terryn, M. Herbaut, A. Vaidya, A. Habrant, G. Paës, and L. Donaldson. 2018. Fluorescence techniques can reveal cell wall organization and predict saccharification in pretreated wood biomass. Industrial Crops and Products 123:84–92. doi:10.1016/j.indcrop.2018.06.058.
  • Colom, X., F. Carrillo, F. Nogués, and P. Garriga. 2003. Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polymer Degradation & Stability 80 (3):543–49. doi:10.1016/S0141-3910(03)00051-X.
  • Ding, D., X. Zhou, Z. Ji, T. You, and F. Xu. 2016. How does hemicelluloses removal alter plant cell wall nanoscale architecture and correlate with enzymatic digestibility? BioEnergy Research 9 (2):601–09. doi:10.1007/s12155-015-9703-1.
  • Guo, J., K. Song, L. Salmén, and Y. Yin. 2015. Changes of wood cell walls in response to hygro-mechanical steam treatment. Carbohydrate Polymers 115:207–14. doi:10.1016/j.carbpol.2014.08.040.
  • Guo, J., H. Zhou, J. S. Stevanic, M. Dong, M. Yu, L. Salmén, and Y. Yin. 2017. Effects of ageing on the cell wall and its hygroscopicity of wood in ancient timber construction. Wood Science and Technology 52 (1):131–47. doi:10.1007/s00226-017-0956-z.
  • Huang, X., D. Kocaefe, Y. Kocaefe, Y. Boluk, and C. Krause. 2013. Structural analysis of heat-treated birch (Betule papyrifera) surface during artificial weathering. Applied Surface Science 264:117–27. doi:10.1016/j.apsusc.2012.09.137.
  • Ishikura, Y., K. Abe, and H. Yano. 2009. Bending properties and cell wall structure of alkali-treated wood. Cellulose (London) 17 (1):47–55. doi:10.1007/s10570-009-9360-7.
  • Kathirselvam, M., A. Kumaravel, V. P. Arthanarieswaran, and S. S. Saravanakumar. 2019. Characterization of cellulose fibers in Thespesia populnea barks: Influence of alkali treatment. Carbohydrate Polymers 217:178–89. doi:10.1016/j.carbpol.2019.04.063.
  • Lee, K. J. D., S. E. Marcus, and J. Paul Knox. 2011. Cell wall biology: Perspectives from cell wall imaging. Molecular Plant 4 (2):212–19. doi:10.1093/mp/ssq075.
  • Manivel, S., N. Pannirselvam, R. Gopinath, and T. P. Sathishkumar. 2022. Influence of Alkali treatment on physicochemical, thermal and mechanical properties of hibiscus vitifolius fibers. Journal of Natural Fibers 19 (15):11708–21. doi:10.1080/15440478.2022.2037489.
  • Marin-Bustamante, M. Q., J. J. Chanona-Pérez, N. Gυemes-Vera, I. Arzate-Vázquez, M. J. Perea-Flores, J. A. Mendoza-Pérez, G. Calderón-Domínguez, and R. G. Casarez-Santiago. 2018. Evaluation of physical, chemical, microstructural and micromechanical properties of nopal spines (Opuntia ficus-indica). Industrial Crops and Products 123:707–18. doi:10.1016/j.indcrop.2018.07.030.
  • Moshiul Alam, A. K. M., M. D. H. Beg, D. M. Reddy Prasad, M. R. Khan, and M. F. Mina. 2012. Structures and performances of simultaneous ultrasound and alkali treated oil palm empty fruit bunch fiber reinforced poly(lactic acid) composites. Composites Part A, Applied Science and Manufacturing 43 (11):1921–29. doi:10.1016/j.compositesa.2012.06.012.
  • Pitchayya Pillai, G., P. Manimaran, and V. Vignesh. 2021. Physico-chemical and mechanical properties of Alkali-treated red banana peduncle fiber. Journal of Natural Fibers 18 (12):2102–11. doi:10.1080/15440478.2020.1723777.
  • Rathinavelu, R., and B. Sethupathi Paramathma. 2022. Examination of characteristic features of raw and alkali-treated cellulosic plant fibers from Ventilago maderaspatana for composite reinforcement. Biomass Conversion and Biorefinery 13 (5):4413–25. doi:10.1007/s13399-022-03461-6.
  • Reddy, K., K. R. N. R. Obi, J. Zhang, J. Zhang, and A. Varada Rajulu. 2013. Effect of Alkali treatment on the properties of century fiber. Journal of Natural Fibers 10 (3):282–96. doi:10.1080/15440478.2013.800812.
  • Sant’anna, C., L. T. Costa, Y. Abud, L. Biancatto, F. Costa Miguens, and W. de Souza. 2013. Sugarcane cell wall structure and lignin distribution investigated by confocal and electron microscopy. Microscopy Research and Technique 76 (8):829–34. doi:10.1002/jemt.22235.
  • Song, K., Y. Yin, L. Salmén, F. Xiao, and X. Jiang. 2013. Changes in the properties of wood cell walls during the transformation from sapwood to heartwood. Journal of Materials Science 49 (4):1734–42. doi:10.1007/s10853-013-7860-1.
  • Stevanic, J. S., and L. Salme. 2009. Orientation of the wood polymers in the cell wall of spruce wood fibres. Holzforschung 63 (5):497–503. doi:10.1515/HF.2009.094.
  • Teli, M., and A. Jadhav. 2017. Erythropoietin monotherapy in perinatal asphyxia with moderate to severe encephalopathy: A randomized placebo-controlled trial. Journal of Perinatology: Official Journal of the California Perinatal Association 37 (5):596–601. doi:10.1038/jp.2017.17.
  • Twebaze, C., M. Zhang, X. Zhuang, M. Kimani, G. Zheng, and Z. Wang. 2022. Banana fiber degumming by Alkali treatment and ultrasonic methods. Journal of Natural Fibers 19 (16):12911–23. doi:10.1080/15440478.2022.2079581.
  • Valášek, P., M. Müller, V. Šleger, V. Kolář, M. Hromasová, R. D’Amato, and A. Ruggiero. 2021. Influence of Alkali treatment on the microstructure and mechanical properties of Coir and Abaca fibers. Materials 14 (10):2636. doi:10.3390/ma14102636.
  • Xia, L., C. Zhang, A. Wang, Y. Wang, and W. Xu. 2019. Morphologies and properties of Juncus effusus fiber after alkali treatment. Cellulose (London) 27 (4):1909–20. doi:10.1007/s10570-019-02933-9.
  • Yin, Y., L. Berglund, and L. Salmén. 2011. Effect of steam treatment on the properties of wood cell walls. Biomacromolecules 12 (1):194–202. doi:10.1021/bm101144m.
  • Zhang, T., M. Guo, L. Cheng, and X. Li. 2015. Investigations on the structure and properties of palm leaf sheath fiber. Cellulose (London) 22 (2):1039–51. doi:10.1007/s10570-015-0570-x.