428
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Influence of Bamboo Fibers Weight Fraction on the Quasi-Static and Dynamic Compressive Responses of Epoxy Matrix Composites

ORCID Icon, , , , &

References

  • Ayswarya, E. P., B. N. Ajalesh, and E. T. Thachil. 2021. A comparative study of mechanical, dynamic mechanical and thermal properties of rice husk ash, modified rice husk ash and nano silica filled epoxy composites. Materials Today: Proceedings 47:5351–19. doi:10.1016/j.matpr.2021.06.067.
  • Bai, H. P., Y. P. Zheng, R. L. Yang, A. Zhang, and N. Wang. 2017. Thermal and mechanical properties of liquid-like trisilanol isobutyl-polyhedral oligomeric silsesquioxanes (POSS) derivative/epoxy nanocomposites. Polymer Composites 38 (4):691–98. doi:10.1002/pc.23628.
  • Bharath, K. B. R., A. K. Singh, M. Doddamani, D. D. Luong, and N. Gupta. 2016. Quasi-static and high strain rate compressive response of injection-molded cenosphere/HDPE syntactic foam. JOM 68 (7):1861–71. doi:10.1007/s11837-016-1912-3.
  • Braga, R. A., and P. A. A. Magalhaes. 2015. Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites. Materials Science & Engineering: C 56:269–73. doi:10.1016/j.msec.2015.06.031.
  • Chand, N., and D. Jain. 2005. Effect of sisal fibre orientation on electrical properties of sisal fibre reinforced epoxy composites. Composites Part A, Applied Science and Manufacturing 36 (5):594–602. doi:10.1016/j.compositesa.2004.08.002.
  • Cheng, P., Y. Peng, S. X. Li, Y. Rao, A. L. Duigou, K. Wang, and S. Ahzi. 2023. 3D printed continuous fiber reinforced composite lightweight structures: A review and outlook. Composites Part B: Engineering 250:110450. doi:10.1016/j.compositesb.2022.110450.
  • Cheng, P., Y. Peng, K. Wang, A. L. Duigou, S. Yao, and C. Chen. 2023. Quasi-static penetration property of 3D printed woven-like ramie fiber reinforced biocomposites. Composite Structures 303:116313. doi:10.1016/j.compstruct.2022.116313.
  • Chenrayan, V., K. Shahapurkar, G. M. Kanaginahal, V. Tirth, A. H. Alghtani, A. Algahtani, F. Althoey, M. E. M. Soudagar, C. Manivannan, and H. C. A. Murthy. 2023. Evaluation of dynamic mechanical analysis of crump rubber epoxy composites: Experimental and empirical perspective. Journal of the Brazilian Society of Mechanical Sciences and Engineering 45 (3):145. doi:10.1007/s40430-023-04033-z.
  • Fuentes, C. A., L. Q. Tran, G. C. Dupont, W. Vanderlinden, and S. D. Feyter. 2011. Wetting behavior and surface properties of technical bamboo fibers. Colloids and Surfaces A, Physicochemical and Engineering Aspects 380 (1–3):89–99. doi:10.1016/j.colsurfa.2011.02.032.
  • Gangadhar, M. K., H. S. Hebbar, and S. M. Kulkarni. 2019. Influence of weave pattern and composite thickness on mechanical properties of bamboo/epoxy composites. Materials Research Express 6 (12):125334. doi:10.1088/2053-1591/ab5a90.
  • Gangadhar, M. K., H. Suresh, S. Kiran, A. A. Mohammed, T. Vineet, M. A. Ibrahim, S. Mika, and H. C. A. Murthy. 2023. Leverage of weave pattern and composite thickness on dynamic mechanical analysis, water absorption and flammability response of bamboo fabric/epoxy composites. Heliyon 9 (1):e12950. doi:10.1016/j.heliyon.2023.e12950.
  • Jeyachandran, P., S. Bontha, S. Bodhak, V. K. Balla, B. Kundu, and M. Doddamani. 2020. Mechanical behaviour of additively manufactured bioactive glass/high density polyethylene composites. Journal of the Mechanical Behavior of Biomedical Materials 108:103830. doi:10.1016/j.jmbbm.2020.103830.
  • Joshi, S. V., L. T. Drzal, A. K. Mohanty, and S. Arora. 2004. Are natural fibre composites environmentally superior to glass fiber reinforced composites? Composites Part A, Applied Science and Manufacturing 35 (3):371–76. doi:10.1016/j.compositesa.2003.09.016.
  • Kanaginahal, G. M. 2022. Characterisation of mechanical, thermal, flammability and water absorption properties of bamboo fabric reinforced polymer composite materials. Surathkal: National Institute of Technology Karnataka.
  • Khan, M. Z. N., Y. Hao, H. Hao, and F. U. A. Shaikh. 2018. Experimental evaluation of quasi-static and dynamic compressive properties of ambient-cured high-strength plain and fiber reinforced geopolymer composites. Construction and Building Materials 166:482–99. doi:10.1016/j.conbuildmat.2018.01.166.
  • Kiran, S., A. Khalid, C. Venkatesh, H. A. Abdulaziz, T. Vineet, A. Ali, M. A. Ibrahim, and M. C. Kiran. 2022. Quasi-static flexural behavior of epoxy-matrix-reinforced crump rubber composites. Processes 10 (5):956–67. doi:10.3390/pr10050956.
  • Kiran, S., M. C. Kiran, M. A. Alamir, V. Tirth, I. M. Alarifi, and V. Chenrayan. 2023. Quasi-static compressive behaviour of epoxy composites reinforced with crumb rubber. Polymers & Polymer Composites 31:1–9. doi:10.1177/09673911231158995.
  • Li, D. Y., Z. Y. Han, Q. Q. Zhu, Y. Zhang, and P. G. Ranjith. 2019. Stress wave propagation and dynamic behavior of red sandstone with single bonded planar joint at various angles. International Journal of Rock Mechanics & Mining Sciences 117:162–70. doi:10.1016/j.ijrmms.2019.03.011.
  • Li, H. T., J. W. Su, Q. S. Zhang, A. J. Deeks, D. Hui, Q. S. Zhank, and D. Hui. 2015. Mechanical performance of laminated bamboo column under axial compression. Composites Part B: Engineering 79:374–82. doi:10.1016/j.compositesb.2015.04.027.
  • Lu, Z. X., and Y. L. Yuan. 2002. Investigation into the energy absorption and failure characteristics of syntactic foams at high strain rates. Acta Mater Compos Sinica 5:114–17. doi:10.1016/S0360-1323(00)00089-5.
  • Meredith, J., S. R. Coles, R. Powe, E. Collings, S. Cozien-Cazuc, B. Weager, J. Müssig, and K. Kirwan. 2013. On the static and dynamic properties of flax and Cordenka epoxy composites. Composites Science and Technology 80:31–38. doi:10.1016/j.compscitech.2013.03.003.
  • Mi, X. Q., F. Wei, L. Y. Zhong, L. Zeng, J. H. Zhang, Z. J. Xu, D. H. Zhang, and M. H. Miao. 2020. Epoxidation of agricultural byproduct konjac fly powder and utilization in toughening and strengthening epoxy resin. Industrial Crops & Products 146:112161. doi:10.1016/j.indcrop.2020.112161.
  • Prabhakar, M. M., S. J. P. Gnanaraj, H. L. Allasi, I. J. Leno, S. Endro, and S. K. R. Kanna. 2021. Mechanical property analysis on bamboo-glass fiber reinforced montmorillonite nano composite. Materials Today: Proceedings 45:6936–40. doi:10.1016/j.matpr.2021.01.392.
  • Rahman, R., and S. Z. F. S. Putra. 2019. Tensile properties of natural and synthetic fiber-reinforced polymer composites. Mechanical and Physical Testing of Biocomposites, Fibre-reinforced Composites and Hybrid Composites :81–102. Elsevier. doi:10.1016/B978-0-08-102292-4.00005-9.
  • Rakesh, S., C. P. S. Dharan, M. Selladurai, V. Sudha, P. R. Sundararajan, and M. Sarojadevi. 2013. Thermal and mechanical properties of POSS-cyanate ester/epoxy nanocomposites. High Performance Polymers 25 (1):87–96. doi:10.1177/0954008312457192.
  • Selvaraj, M., N. Pannirselvam, P. T. Ravichandran, B. Mylsamy, and S. Samson. 2023. Extraction and characterization of a new natural cellulosic fiber from bark of ficus carica plant as potential reinforcement for polymer composites. Journal of Natural Fibers 20 (2):2194699. doi:10.1080/15440478.2023.2194699.
  • Wang, D., T. Bai, W. L. Cheng, C. Xu, G. Wang, H. T. Cheng, and G. P. Han. 2019. Surface modification of bamboo fibers to enhance the interfacial adhesion of epoxy resin-based composites prepared by resin transfer molding. Polymers 11 (12):2107. doi:10.3390/polym11122107.
  • Wang, L., Y. Shi, R. Sa, N. Ning, W. Wang, M. Tian, and L. Zhang. 2016. Surface modification of aramid fibers by catechol/polyamine codeposition followed by silane grafting for enhanced interfacial adhesion to rubber matrix. Industrial & Engineering Chemistry Research 55 (49):12547–56. doi:10.1021/acs.iecr.6b03177.
  • Wang, C. C., L. M. Smith, and G. Wang. 2019. Characterization of interfacial interactions in bamboo pulp fiber/high density polyethylene composites treated by nano CaCO3 impregnation modification using fractal theory and dynamic mechanical analysis. Industrial Crops & Products 141:111712. doi:10.1016/j.indcrop.2019.111712.
  • Wasti, S., and S. Adhikari. 2020. Use of biomaterials for 3D printing by fused deposition modeling technique: A review. Frontiers in Chemistry 8:315–28. doi:10.3389/fchem.2020.00315.
  • Xie, Y. J., C. A. S. Hill, Z. F. Xiao, H. Militz, and C. Mai. 2010. Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A, Applied Science and Manufacturing 41 (7):806–19. doi:10.1016/j.compositesa.2010.03.005.
  • Yu, Q., W. Zhuang, and C. Shi. 2021. Research progress on the dynamic compressive properties of ultra-high performance concrete under high strain rates. Cement and Concrete Composites 124:104258. doi:10.1016/j.cemconcomp.2021.104258.
  • Zegaoui, A., M. Derradji, R. Ma, W. Cai, A. Medjahed, W. Liu, D. A. Qadeer, and J. Wang. 2018. Silane-modified carbon fibers reinforced cyanate ester/benzoxazine resin composites: Morphological, mechanical and thermal degradation properties. Vacuum 150:12–23. doi:10.1016/j.vacuum.2018.01.025.
  • Zegaoui, A., R. K. Ma, A. Q. Dayo, M. Derradji, J. Wang, W. B. Liu, Y. L. Xu, and W. A. Cai. 2018. Morphological, mechanical and thermal properties of cyanate ester/benzoxazine resin composites reinforced by silane treated natural hemp fibers. Chinese Journal of Chemical Engineering 26 (5):1219–28. doi:10.1016/j.cjche.2018.01.008.
  • Zou, H., W. L. Yin, C. C. Cai, B. Wang, A. Liu, Z. Yang, Y. B. Li, and X. D. He. 2018. The out-of-plane compression behavior of cross-PlyAS4/PEEK thermoplastic composite laminates at high strain rates. Materials 11 (11):2312–26. doi:10.3390/ma11112312.