879
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biomedical Potential of Keratin-Biphalin Wound Dressing in Diabetic Mice: In Vitro and In Vivo Studies

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, & ORCID Icon show all

References

  • Bao, P., A. Kodra, M. Tomic-Canic, M. S. Golinko, H. P. Ehrlich, and H. Brem. 2009. “The Role of Vascular Endothelial Growth Factor in Wound Healing.” Journal of Surgical Research 153 (2): 347–16. https://doi.org/10.1016/j.jss.2008.04.023.
  • Berthézène, C. D., L. Rabiller, G. Jourdan, B. Cousin, L. Pénicaud, L. Casteilla, and A. Lorsignol. 2021. “Tissue Regeneration: The Dark Side of Opioids.” International Journal of Molecular Sciences 22 (14): 7336. https://doi.org/10.3390/ijms22147336.
  • Bigliardi, P. L., S. Büchner, T. Rufli, and M. Bigliardi-Qi. 2002. “Specific Stimulation of Migration of Human Keratinocytes by μ-Opiate Receptor Agonists.” Journal of Receptors and Signal Transduction 22 (1–4): 191–199. https://doi.org/10.1081/RRS-120014595.
  • Bochynska-Czyz, M., P. Redkiewicz, H. Kozlowska, J. Matalinska, M. Konop, and P. Kosson. 2020. “Can Keratin Scaffolds Be Used for Creating Three-Dimensional Cell Cultures?” Open Medicine 15 (1): 249–253. https://doi.org/10.1515/med-2020-0031.
  • Bujor, A. M., J. Pannu, S. Bu, E. A. Smith, R. C. Muise-Helmericks, and M. Trojanowska. 2008. “Akt Blockade Downregulates Collagen and Upregulates MMP1 in Human Dermal Fibroblasts.” Journal of Investigative Dermatology 128 (8): 1906–1914. https://doi.org/10.1038/jid.2008.39.
  • Capó, X., M. Monserrat-Mesquida, M. Quetglas-Llabrés, J. M. Batle, J. A. Tur, A. Pons, A. Sureda, and S. Tejada. 2023. “Hyperbaric Oxygen Therapy Reduces Oxidative Stress and Inflammation, and Increases Growth Factors Favouring the Healing Process of Diabetic Wounds.” International Journal of Molecular Sciences 24 (8): 7040. https://doi.org/10.3390/ijms24087040.
  • Chang, P. J., M. Y. Chen, Y. S. Huang, C. H. Lee, C. C. Huang, C. F. Lam, and Y. C. Tsai. 2010. “Morphine Enhances Tissue Content of Collagen and Increases Wound Tensile Strength.” Journal of Anesthesia 24 (2): 240–246. https://doi.org/10.1007/s00540-009-0845-1.
  • Chen, J., Y. Chen, Y. Chen, Z. Yang, B. You, Y. C. Ruan, and Y. Peng. 2016. “Epidermal CFTR Suppresses MAPK/NF-Κb to Promote Cutaneous Wound Healing.” Cellular Physiology and Biochemistry 39 (6): 2262–2274. https://doi.org/10.1159/000447919.
  • Chen, Y., Y. Li, X. Yang, Z. Cao, H. Nie, Y. Bian, and G. Yang. 2021. “Glucose-Triggered in situ Forming Keratin Hydrogel for the Treatment of Diabetic Wounds.” Acta Biomaterialia 125 (April): 208–218. https://doi.org/10.1016/j.actbio.2021.02.035.
  • Chen, X., D. Zhai, B. Wang, S. Hao, J. Song, and Z. Peng. 2020. “Hair Keratin Promotes Wound Healing in Rats with Combined Radiation-Wound Injury.” Journal of Materials Science: Materials in Medicine 31 (3): 28. https://doi.org/10.1007/s10856-020-06365-x.
  • Clark, R. A., and M. Pavlis. 2009. “Dysregulation of the MTOR Pathway Secondary to Mutations or a Hostile Microenvironment Contributes to Cancer and Poor Wound Healing.” Journal of Investigative Dermatology 129 (3): 529–531. https://doi.org/10.1038/jid.2008.441.
  • Cuvas Apan, O., M. A. Ozer, S. Takir, A. Apan, and D. Sengul. 2016. “Effect of Topical Administration of Tramadol on Corneal Wound Healing in Rats.” International Ophthalmology 36 (5): 675–680. https://doi.org/10.1007/s10792-016-0184-9.
  • Gao, J., L. Zhang, Y. Wei, T. Chen, X. Ji, K. Ye, J. Yu, B. Tang, Sun, X. and Hu, J. et al. 2019. “Human Hair Keratins Promote the Regeneration of Peripheral Nerves in a Rat Sciatic Nerve Crush Model.” Journal of Materials Science: Materials in Medicine 30 (7): 82. https://doi.org/10.1007/s10856-019-6283-1.
  • Goren, I., E. Müller, D. Schiefelbein, P. Gutwein, O. Seitz, J. Pfeilschifter, and S. Frank. 2009. “Akt1 Controls Insulin-Driven VEGF Biosynthesis from Keratinocytes: Implications for Normal and Diabetes-Impaired Skin Repair in Mice.” Journal of Investigative Dermatology 129 (3): 752–764. https://doi.org/10.1038/jid.2008.230.
  • Graziottin, A., J. Gardner-Nix, M. Stumpf, and M. N. Berliner. 2011. “Opioids: How to Improve Compliance and Adherence.” Pain Practice 11 (6): 574–581. https://doi.org/10.1111/j.1533-2500.2011.00449.x.
  • Gupta, M., T. Poonawala, M. Farooqui, M. E. Ericson, and K. Gupta. 2015. “Topical Fentanyl Stimulates Healing of Ischemic Wounds in Diabetic Rats 局部芬太尼?醉可以促进糖尿病大?缺血性伤口的愈合.” Journal of Diabetes 7 (4): 573–583. https://doi.org/10.1111/1753-0407.12223.
  • Hadian, Y., M. D. Bagood, S. E. Dahle, A. Sood, and R. R. Isseroff. 2019. “Interleukin-17: Potential Target for Chronic Wounds.” Mediators of Inflammation 2019 1–10. https://doi.org/10.1155/2019/1297675.
  • He, J., Z. Li, J. Wang, T. Li, J. Chen, X. Duan, and B. Guo. 2023. “Photothermal Antibacterial Antioxidant Conductive Self-Healing Hydrogel with Nitric Oxide Release Accelerates Diabetic Wound Healing.” Composites Part B Engineering 266:110985. https://doi.org/10.1016/j.compositesb.2023.110985.
  • Hettiarachchi, K., S. Ridge, D. W. Thomas, L. Olson, C. R. Obi, and D. Singh. 2001. “Characterization and Analysis of Biphalin: An Opioid Peptide with a Palindromic Sequence.” The Journal of Peptide Research 57 (2): 151–161. https://doi.org/10.1034/j.1399-3011.2001.00819.x.
  • Huang, H., W. Cui, W. Qiu, M. Zhu, R. Zhao, D. Zeng, C. Dong et al. 2015. “Impaired Wound Healing Results from the Dysfunction of the Akt/MTOR Pathway in Diabetic Rats.” Journal of Dermatological Science 79 (3): 241–251. https://doi.org/10.1016/j.jdermsci.2015.06.002.
  • Johnson, B. Z., A. W. Stevenson, C. M. Prêle, M. W. Fear, and F. M. Wood. 2020. “The Role of IL-6 in Skin Fibrosis and Cutaneous Wound Healing.” Biomedicines 8 (5): 101. https://doi.org/10.3390/biomedicines8050101.
  • Johnson, K. E., and T. A. Wilgus. 2014. “Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair.” Advances in Wound Care 3 (10): 647–661. https://doi.org/10.1089/wound.2013.0517.
  • Jull, A., A. Wadham, C. Bullen, V. Parag, C. Weller, and J. Waters. 2020. “Wool-Derived Keratin Dressings versus Usual Care Dressings for Treatment of Slow Healing Venous Leg Ulceration: A Randomised Controlled Trial (Keratin4vlu).” British Medical Journal Open 10 (7): e036476. https://doi.org/10.1136/bmjopen-2019-036476.
  • Konop, M., J. Czuwara, E. Kłodzińska, A. K. Laskowska, D. Sulejczak, T. Damps, U. Zielenkiewicz, et al. 2020. “Evaluation of Keratin Biomaterial Containing Silver Nanoparticles as a Potential Wound Dressing in Full‐Thickness Skin Wound Model in Diabetic Mice.” Journal of Tissue Engineering and Regenerative Medicine 14 (2): 334–346. https://doi.org/10.1002/term.2998.
  • Konop, M., J. Czuwara, E. Kłodzińska, A. K. Laskowska, U. Zielenkiewicz, I. Brzozowska, S. M. Nabavi, and L. Rudnicka. 2018. “Development of a Novel Keratin Dressing Which Accelerates Full-Thickness Skin Wound Healing in Diabetic Mice: In Vitro and in vivo Studies.” Journal of Biomaterials Applications 33 (4): 527–540. https://doi.org/10.1177/0885328218801114.
  • Konop, M., A. K. Laskowska, M. Rybka, E. Kłodzińska, D. Sulejczak, R. A. Schwartz, and J. Czuwara. 2021. “Keratin Scaffolds Containing Casomorphin Stimulate Macrophage Infiltration and Accelerate Full-Thickness Cutaneous Wound Healing in Diabetic Mice.” Molecules 26 (9): 2554. https://doi.org/10.3390/molecules26092554.
  • Konop, M., M. Rybka, and A. Drapała. 2021. “Keratin Biomaterials in Skin Wound Healing, an Old Player in Modern Medicine: A Mini Review.” Pharmaceutics 13 (12): 2029. https://doi.org/10.3390/pharmaceutics13122029.
  • Konop, M., M. Rybka, M. Szudzik, Ł. Mazurek, A. K. Laskowska, D. Sulejczak, Z. Ruszczak, et al. 2023. “Keratin-Butyrate Scaffolds Promote Skin Wound Healing in Diabetic Rats Through Down-Regulation of IL-1β and Up-Regulation of Keratins 16 and 17.” Journal of Natural Fibers 20 (1). https://doi.org/10.1080/15440478.2022.2136325.
  • Konop, M., D. Sulejczak, J. Czuwara, P. Kosson, A. Misicka, A. W. Lipkowski, and L. Rudnicka. 2017. “The Role of Allogenic Keratin-Derived Dressing in Wound Healing in a Mouse Model.” Wound Repair and Regeneration 25 (1): 62–74. https://doi.org/10.1111/wrr.12500.
  • Lazarczyk, M., E. Matyja, and A. W. Lipkowski. 2010. “A Comparative Study of Morphine Stimulation and Biphalin Inhibition of Human Glioblastoma T98G Cell Proliferation in vitro.” Peptides 31 (8): 1606–1612. https://doi.org/10.1016/j.peptides.2010.05.002.
  • Lipkowski, A. W., A. M. Konecka, and I. Sroczyńska. 1982. “Double-Enkephalins—Synthesis, Activity on Guinea-Pig Ileum, and Analgesic Effect.” Peptides 3 (4): 697–700. https://doi.org/10.1016/0196-9781(82)90173-5.
  • Martin, J. L., L. Koodie, A. G. Krishnan, R. Charboneau, R. A. Barke, and S. Roy. 2010. “Chronic Morphine Administration Delays Wound Healing by Inhibiting Immune Cell Recruitment to the Wound Site.” The American Journal of Pathology 176 (2): 786–799. https://doi.org/10.2353/ajpath.2010.090457.
  • Mazurek, Ł., M. Szudzik, M. Rybka, and M. Konop. 2022. “Silk Fibroin Biomaterials and Their Beneficial Role in Skin Wound Healing.” Biomolecules 12 (12): 1852. https://doi.org/10.3390/biom12121852.
  • Mazzarino, L., G. Loch-Neckel, L. Dos Santos Bubniak, F. Ourique, I. Otsuka, S. Halila, R. Curi Pedrosa, et al. 2015. “Nanoparticles Made from Xyloglucan-Block-Polycaprolactone Copolymers: Safety Assessment for Drug Delivery.” Toxicological Sciences 147 (1): 104–115. https://doi.org/10.1093/toxsci/kfv114.
  • Muchowska, A., P. Redkiewicz, K. Różycki, J. Matalińska, P. F. J. Lipiński, J. Czuwara, and P. Kosson. 2020. “The Analgesic Hybrid of Dermorphin/Substance P and Analog of Enkephalin Improve Wound Healing in Streptozotocin‐Induced Diabetic Rats.” Wound Repair and Regeneration 28 (2): 177–184. https://doi.org/10.1111/wrr.12775.
  • Pakdel, M., Z. Moosavi-Nejad, R. Kasra Kermanshahi, and H. Hosano. 2022. “Self-Assembled Uniform Keratin Nanoparticles as Building Blocks for Nanofibrils and Nanolayers Derived from Industrial Feather Waste.” Journal of Cleaner Production 335 (February): 130331. https://doi.org/10.1016/j.jclepro.2021.130331.
  • Park, Y. R., M. T. Sultan, H. J. Park, J. M. Lee, H. W. Ju, O. J. Lee, D. J. Lee, D. L. Kaplan, and C. H. Park. 2018. “NF-Κb Signaling is Key in the Wound Healing Processes of Silk Fibroin.” Acta Biomaterialia 67 (February): 183–195. https://doi.org/10.1016/j.actbio.2017.12.006.
  • Poonawala, T., B. K. Levay-Young, R. P. Hebbel, and K. Gupta. 2005. “Opioids Heal Ischemic Wounds in the Rat.” Wound Repair and Regeneration 13 (2): 165–174. https://doi.org/10.1111/j.1067-1927.2005.130207.x.
  • Poranki, D., W. Whitener, S. Howse, T. Mesen, E. Howse, J. Burnell, O. Greengauz-Roberts, J. Molnar, and M. Van Dyke. 2014. “Evaluation of Skin Regeneration After Burns in vivo and Rescue of Cells After Thermal Stress in vitro Following Treatment with a Keratin Biomaterial.” Journal of Biomaterials Applications 29 (1): 26–35. https://doi.org/10.1177/0885328213513310.
  • Price, P. E., H. Fagervik-Morton, E. J. Mudge, H. Beele, J. C. Ruiz, T. H. Nystrøm, C. Lindholm, et al. 2008. “Dressing-Related Pain in Patients with Chronic Wounds: An International Patient Perspective.” International Wound Journal 5 (2): 159–171. https://doi.org/10.1111/j.1742-481X.2008.00471.x.
  • Qin, S., L. Qin, C. Zhang, L. Liu, W. Sun, N. Li, R. Wu, and X. Wang. 2015. “P120-Catenin Modulating Nuclear Factor-Κb Activation is Partially RhoA/ROCKdependent in Scratch Injury.” Wound Repair and Regeneration 23 (2): 231–240. https://doi.org/10.1111/wrr.12270.
  • Qu, J., X. Zhao, Y. Liang, T. Zhang, P. X. Ma, and B. Guo. 2018. “Antibacterial Adhesive Injectable Hydrogels with Rapid Self-Healing, Extensibility and Compressibility as Wound Dressing for Joints Skin Wound Healing.” Biomaterials 183 (November): 185–199. https://doi.org/10.1016/j.biomaterials.2018.08.044.
  • Rook, J. M., and K. E. McCarson. 2007. “Delay of Cutaneous Wound Closure by Morphine via Local Blockade of Peripheral Tachykinin Release.” Biochemical Pharmacology 74 (5): 752–757. https://doi.org/10.1016/j.bcp.2007.06.005.
  • Sadeghi, S., J. Nourmohammadi, A. Ghaee, and N. Soleimani. 2020. “Carboxymethyl Cellulose-Human Hair Keratin Hydrogel with Controlled Clindamycin Release as Antibacterial Wound Dressing.” International Journal of Biological Macromolecules 147 (March): 1239–1247. https://doi.org/10.1016/j.ijbiomac.2019.09.251.
  • Sanchez Ramirez, D. O., C. Vineis, I. Cruz-Maya, C. Tonetti, V. Guarino, and A. Varesano. 2022. “Wool Keratin Nanofibers for Bioinspired and Sustainable Use in Biomedical Field.” Journal of Functional Biomaterials 14 (1): 5. https://doi.org/10.3390/jfb14010005.
  • Sando, L., M. Kim, M. L. Colgrave, J. A. Ramshaw, J. A. Werkmeister, and C. M. Elvin. 2010. “Photochemical Crosslinking of Soluble Wool Keratins Produces a Mechanically Stable Biomaterial That Supports Cell Adhesion and Proliferation.” Journal of Biomedical Materials Research Part A 95A (3): 901–911. https://doi.org/10.1002/jbm.a.32913.
  • Shanmugam, V. K., K. S. Couch, S. McNish, and R. L. Amdur. 2017. “Relationship Between Opioid Treatment and Rate of Healing in Chronic Wounds.” Wound Repair and Regeneration 25 (1): 120–130. https://doi.org/10.1111/wrr.12496.
  • Shen, K. F., and S. M. Crain. 1995. “Biphalin, an Enkephalin Analog with Unexpectedly High Antinociceptive Potency and Low Dependence Liability in Vivo, Selectively Antagonizes Excitatory Opioid Receptor Functions of Sensory Neurons in Culture.” Brain Research 701 (1–2): 158–166. https://doi.org/10.1016/0006-8993(95)00999-1.
  • Tang, L., J. O. Sierra, R. Kelly, R. S. Kirsner, and J. Li. 2012. “Wool-Derived Keratin Stimulates Human Keratinocyte Migration and Types IV and VII Collagen Expression.” Experimental Dermatology 21 (6): 458–460. https://doi.org/10.1111/j.1600-0625.2012.01505.x.
  • Tan, J. L., B. Lash, R. Karami, B. Nayer, Y. Z. Lu, C. Piotto, Z. Julier, and M. M. Martino. 2021. “Restoration of the Healing Microenvironment in Diabetic Wounds with Matrix-Binding IL-1 Receptor Antagonist.” Communications Biology 4 (1): 422. https://doi.org/10.1038/s42003-021-01913-9.
  • Uehara, I., and N. Tanaka. 2018. “Role of P53 in the Regulation of the Inflammatory Tumor Microenvironment and Tumor Suppression.” Cancers 10 (7): 219. https://doi.org/10.3390/cancers10070219.
  • Wang, L., X. Wu, T. Shi, and L. Lu. 2013. “Epidermal Growth Factor (EGF)-Induced Corneal Epithelial Wound Healing Through Nuclear Factor Κb Subtype-Regulated CCCTC Binding Factor (CTCF) Activation.” Journal of Biological Chemistry 288 (34): 24363–24371. https://doi.org/10.1074/jbc.M113.458141.
  • Waters, M., P. VandeVord, and M. Van Dyke. 2018. “Keratin Biomaterials Augment Anti-Inflammatory Macrophage Phenotype in vitro.” Acta Biomaterialia 66 (January): 213–223. https://doi.org/10.1016/j.actbio.2017.10.042.
  • Wullschleger, S., R. Loewith, and M. N. Hall. 2006. “TOR Signaling in Growth and Metabolism.” Cell 124 (3): 471–484. https://doi.org/10.1016/j.cell.2006.01.016.
  • Xing, W., W. Guo, C. H. Zou, T. T. Fu, X. Y. Li, M. Zhu, J. H. Qi, et al. 2015. “Acemannan Accelerates Cell Proliferation and Skin Wound Healing Through AKT/MTOR Signaling Pathway.” Journal of Dermatological Science 79 (2): 101–109. https://doi.org/10.1016/j.jdermsci.2015.03.016.
  • Yang, Y., Y. Du, J. Zhang, H. Zhang, and B. Guo. 2022. “Structural and Functional Design of Electrospun Nanofibers for Hemostasis and Wound Healing.” Advanced Fiber Materials 4 (5): 1027–1057. https://doi.org/10.1007/s42765-022-00178-z.
  • Ye, W., M. Qin, R. Qiu, and J. Li. 2022. “Keratin-Based Wound Dressings: From Waste to Wealth.” International Journal of Biological Macromolecules 211 (June): 183–197. https://doi.org/10.1016/j.ijbiomac.2022.04.216.
  • Yıldız, E., Ö. M. G. Totuk, A. Mollica, K. Kabadayı, and A. Şahin. 2018. Effects of Biphalin on Corneal Epithelial Wound Healing. “ In Proceedings 2 (25). 1552. https://doi.org/10.3390/proceedings2251552.
  • Zhang, Y., M. Li, Y. Wang, F. Han, K. Shen, L. Luo, Y. Li, et al. 2023. “Exosome/metformin-Loaded Self-Healing Conductive Hydrogel Rescues Microvascular Dysfunction and Promotes Chronic Diabetic Wound Healing by Inhibiting Mitochondrial Fission.” Bioactive Materials 26:323–336. https://doi.org/10.1016/j.bioactmat.2023.01.020.