5,135
Views
66
CrossRef citations to date
0
Altmetric
Original Articles

Advances in Inhalation Dosimetry Models and Methods for Occupational Risk Assessment and Exposure Limit Derivation

, , &

REFERENCES

  • Wheeler, M., R. Park, A.J. Bailer, and C. Whittaker: Historical context and recent advances in exposure-response estimation for deriving occupational exposure limits. J. Occup. Environ. Hyg. (2015).
  • Barnes, D.G., G.P. Daston, J.S. Evans et al. : Benchmark dose workshop: criteria for use of a benchmark dose to estimate a reference dose. Regul. Toxicol. Pharmacol. 21:296–306 (1995).
  • U.S. Environmental Protection Agency: “Benchmark Dose Technical Guidance.” 2012. Available at http://www.epa.gov/raf/publications/pdfs/benchmark_dose_guidance.pdf (accessed August 19, 2014).
  • U.S. Environmental Protection Agency: “Methods for Derivation of Inhalation Reference Concentrations and Application of Inhalation Dosimetry.” 1994 Available at http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid = 71993 (accessed March 28, 2013).
  • U.S. Environmental Protection Agency: “Advances in Inhalation Gas Dosimetry for Derivation of a Reference Concentration (RfC) and Use in Risk Assessment.” 2012. Available at http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid = 244650 (accessed March 28, 2013).
  • Jarabek, A.M., B. Asgharian, and F.J. Miller: Dosimetric adjustments for interspecies extrapolation of inhaled poorly soluble particles (PSP). Inhal. Toxicol. 17(7-8):317–334 (2005).
  • International Commission on Radiological Protection (ICRP): Human Respiratory Tract Model for Radiological Protection. Tarrytown, NY: Elsevier Science Ltd., 1994.
  • Dahl, A.R., R.B. Schlesinger, H.D. Heck, M.A. Medinsky, and G.W. Lucier: Comparative dosimetry of inhaled materials: differences among animal species and extrapolation to man. Fundam. Appl. Toxicol. 16(1):1–13 (1991).
  • Schlesinger, R.B.: Comparative deposition of inhaled aerosols in experimental animals and humans: a review. J. Toxicol. Environ. Health 15(2):197–214 (1985).
  • U.S. Environmental Protection Agency: “Approaches for the Application of Physiologically Based Pharmacokinetic (PBPK) Models and Supporting Data in Risk Assessment.” 2006. Available at http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid = 157668 (accessed March 28, 2013).
  • Hanna, L.M., S.R. Lou, S. Su, and A.M. Jarabek: Mass transport analysis: inhalation rfc methods framework for interspecies dosimetric adjustment. Inhal. Toxicol. 13(5):437–463 (2001).
  • Dahl, A.R.: Dose concepts for inhaled vapors and gases. Toxicol. Appl. Pharmacol. 103:185–197 (1990).
  • Overton, J.H., and F.J. Miller: Absorption of Inhaled Reactive Gases. In Toxicology of the Lung, D.E. Gardner, J.D. Crapo, and E.J. Massaro (eds.). New York: Raven Press, 1988. pp. 477–507.
  • Fiserova-Bergerova, V.: Modeling of Inhalation Exposure to Vapors: Uptake, Distribution, and Elimination. Boca Raton, FL: CRC Press Inc., 1983.
  • Asgharian, B., O.T. Price, J.D. Schroeter, J.S. Kimbell, L. Jones, and M. Singal: Derivation of mass transfer coefficients for transient uptake and tissue disposition of soluble and reactive vapors in lung airways. Ann. Biomed. Eng. 39(6):1788–1804 (2011).
  • Corley, R.A., S. Kabilan, A.P. Kuprat et al. : Comparative computational modeling of airflows and vapor dosimetry in the respiratory tracts of rat, monkey, and human. Toxicol. Sci. 128(2):500–516 (2012).
  • U.S. Environmental Protection Agency: “Guidelines for Carcinogen Risk Assessment.” 2005. Available at http://www.epa.gov/raf/publi-cations/pdfs/CANCER_GUIDELINES_FINAL_3-25-05.PDF (accessed August 19, 2014).
  • Boxenbaum, H.: Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J. Pharmacokinet. Biopharm. 10(2):201–227 (1982).
  • O’Flaherty, E.J.: Interspecies conversion of kinetically equivalent doses. Risk Anal. 9(4): 587–598 (1989).
  • U.S. Environmental Protection Agency: “Recommended Use of Body Weight¾ as Default Method in Derivation of the Oral Refernce Dose.” 2011. Available at http://www.epa.gov/raf/publications/interspecies-extrapolation.htm (accessed August 19, 2014).
  • U.S. Environmental Protection Agency: EPA request for comments on draft report on cross-species scaling factor for cancer risk assessment. Fed. Regist. 57:24152 (1992).
  • Jarabek, A.M.: Interspecies extrapolation based on mechanistic determinants of chemical disposition. Human Ecol. Risk Assess. 1(5):641–662 (1995).
  • Jarabek, A.M.: Consideration of temporal toxicity challenges current default approaches. Inhal. Toxicol. 7:927–946 (1995).
  • Mercer, R.R., A.F. Hubbs, J.F. Scabilloni et al.: Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Part. Fibre Toxicol. 8:21 (2011).
  • Pauluhn, J.: Poorly soluble particulates: searching for a unifying denominator of nanoparticles and fine particles for DNEL estimation. Toxicology 279(1–3):176–188 (2011).
  • Sargent, L.M., A.A. Shvedova, A.F. Hubbs et al. : Induction of aneuploidy by single-walled carbon nanotubes. Environ. Mol. Mutagen. 50(8):708–717 (2009).
  • Jarabek, A.M.: The application of dosimetry models to identify key processes and parameters for default dose-response assessment approaches. Toxicol. Lett. 79:171–184 (1995).
  • Dankovic, D.A., B.D. Naumann, M.L. Dourson, Maier, and L. Levy: The scientific basis of uncertainty factors used in setting occupational exposure limits. J. Occup. Environ. Hyg. (2015).
  • WHO: Harmonization Project Document no.2: Chemical-specific Adjustment Factors for Interspecies Differences and Human Variability: Guidance Document for Use of Data in Dose/Concentration-response Assessment. Geneva: World Health Organization, 2005.
  • Bogdanffy, M.S., and A.M. Jarabek: Understanding mechanisms of inhaled toxicants: implications for replacing default factors with chemical-specific data. Toxicol. Lett. 82–83:919–932 (1995).
  • Kimbell, J.S., J.H. Overton, R.P. Subramaniam et al. : Dosimetry modeling of inhaled formaldehyde: binning nasal flux predictions for quantitative risk assessment. Toxicol. Sci. 64(1):111–121 (2001).
  • Kimbell, J.S., R.P. Subramaniam, E.A. Gross, P.M. Schlosser, and K.T. Morgan: Dosimetry modeling of inhaled formaldehyde: comparisons of local flux predictions in the rat, monkey, and human nasal passages. Toxicol. Sci. 64(1):100–110 (2001).
  • Overton, J.H., J.S. Kimbell, and F.J. Miller: Dosimetry modeling of inhaled formaldehyde: the human respiratory tract. Toxicol. Sci. 64(1):122–134 (2001).
  • ARA: “Multiple-path particle deposition (MPPD 2.1, beta version): A model for human and rat airway particle dosimetry,” by Applied Research Associates, Inc., Raleigh, NC.
  • Schroeter, J.D., J.S. Kimbell, E.A. Gross et al.: Application of physiological computational fluid dynamics models to predict interspecies nasal dosimetry of inhaled acrolein. Inhal. Toxicol. 20(3):227–243 (2008).
  • Schroeter, J.D., G.J. Garcia, and J.S. Kimbell: A computational fluid dynamics approach to assess interhuman variability in hydrogen sulfide nasal dosimetry. Inhal. Toxicol. 22(4):277–286 (2010).
  • Simon, T.W.: Combining physiologically based pharmacokinetic modeling with Monte Carlo simulation to derive an acute inhalation guidance value for trichloroethylene. Regul. Toxicol. Pharmacol. 26(3):257–270 (1997).
  • Gargas, M.L., T.R. Tyler, L.M. Sweeney et al.: A toxicokinetic study of inhaled ethylene glycol ethyl ether acetate and validation of a physiologically based pharmacokinetic model for rat and human. Toxicol. Appl. Pharmacol. 165(1):63–73 (2000).
  • Gargas, M.L., T.R. Tyler, L.M. Sweeney et al.: A toxicokinetic study of inhaled ethylene glycol monomethyl ether (2-ME) and validation of a physiologically based pharmacokinetic model for the pregnant rat and human. Toxicol. Appl. Pharmacol. 165(1):53–62 (2000).
  • Sweeney, L.M., T.R. Tyler, C.R. Kirman et al. : Proposed occupational exposure limits for select ethylene glycol ethers using PBPK models and Monte Carlo simulations. Toxicol. Sci. 62(1):124–139 (2001).
  • Kirman, C.R., L.M. Sweeney, M.L. Gargas, and J.H. Kinzell: Evaluation of possible modes of action for acute effects of methyl iodide in laboratory animals. Inhal. Toxicol. 21(6):537–551 (2009).
  • Mileson, B.E., L.M. Sweeney, M.L. Gargas, and J. Kinzell: Iodomethane human health risk characterization. Inhal. Toxicol. 21(6):583–605 (2009).
  • Sweeney, L.M., C.R. Kirman, S.A. Gannon, K.D. Thrall, M.L. Gargas, and J.H. Kinzell: Development of a physiologically based pharmacokinetic (PBPK) model for methyl iodide in rats, rabbits, and humans. Inhal. Toxicol. 21(6):552–582 (2009).
  • ACGIH: Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices. Cincinnati, OH: American Conference of Governmental Industrial Hygienists, 2014.
  • Bohning, D.E., and M. Lippmann: Particle Deposition and Pulmonary Defense Mechanisms. In Environmental and Occupational Medicine, W.N. Rom (ed.). Boston: Little, Brown and Company, 1992. pp. 171–182.
  • Hinds, W.C.: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. New York: John Wiley & Sons, Inc., 1999. pp. 233–259.
  • Schulz, H., P. Brand, and J. Heyder: Particle Deposition in the Respiratory Tract. In Particle-lung Interactions, P. Gehr and J. Heyder (eds.). New York: Marcel Dekker Inc., 2000. pp. 229–290.
  • Vincent, J.H.: Health-related aerosol measurement: a review of existing sampling criteria and proposals for new ones. J. Environ. Monit. 7(11):1037–1053 (2005).
  • Sturm, R., and W. Hofmann: A theoretical approach to the deposition and clearance of fibers with variable size in the human respiratory tract. J. Haz. Mater. 170(1):210–218 (2009).
  • Schlesinger, R.B.: Interaction of gaseous and particulate pollutants in the respiratory tract: mechanisms and modulators. Toxicology 105(2–3):315–325 (1995).
  • Snipes, M.B.: Long-term retention and clearance of particles inhaled by mammalian species. Crit. Rev. Toxicol. 20(3):175–211 (1989).
  • Lioy, P.J., M. Lippmann, and R.F. Phalen: Rationale for particle size-selective air sampling. Ann. Am. Conf. Ind. Hyg. 11:27–34 (1984).
  • Stahlhofen, W., G. Rudolf, and A.C. James: Intercomparison of experimental regional aerosol deposition data. J. Aerosol. Med. 2(3):285–308 (1989).
  • Freedman, A.P., and S.E. Robinson: Noninvasive Magnetopneumographic Studies of Lung Dust Retention and Clearance in Coal Miners. In Respirable Dust in the Mineral Industries: Health Effects, Characterization and Control, R.L. Frantz and R.V. Ramani (eds.). University Park, PA: The Pennsylvania State University, 1988. pp. 181–186.
  • Bailey, M.R., F.A. Fry, and A.C. James: Long-term retention of particles in the human respiratory tract. J. Aerosol. Sci. 16(4):295–305 (1985).
  • Miller, F.J.: Dosimetry of particles in laboratory animals and humans in relationship to issues surrounding lung overload and human health risk assessment: a critical review. Inhal. Toxicol. 12(1–2):19–57 (2000).
  • Kreyling, W.G.: Interspecies comparison of lung clearance of insoluble particles. J. Aerosol. Med. 3(Suppl 1): S93–S110 (1990).
  • Snipes, M.B.: Current Information on Lung Overload in Nonrodent Mammals: Contrast with Rats. In Particle Overload in the Rat Lung and Lung Cancer: Implications for Human Risk Assessment. Proceedings of a Conference Held at the Massachusetts Institute of Technology on March 29 and 30, 1995, J.L. Mauderly and R.J. McCunney (eds.). Washington, DC: Taylor and Francis, 1996. pp. 91–109.
  • Yu, C.P.: Extrapolation Modeling of Particle Deposition and Retention from Rats to Humans. In Particle Overload in the Rat Lung and Lung Cancer: Implications for Human Risk Assessment. Proceedings of a Conference Held at the Massachusetts Institute of Technology on March 29 and 30, 1995, J.L. Mauderly and R.J. McCunney (eds.). Washington, DC: Taylor and Francis, 1996. pp. 279–291.
  • Nikula, K.J., K.J. Avila, W.C. Griffith, and J.L. Mauderly: Lung tissue responses and sites of particle retention differ between rats and cynomolgus monkeys exposed chronically to diesel exhaust and coal dust. Fundam. Appl. Toxicol. 37(1):37–53 (1997).
  • Nikula, K.J., V. Vallyathan, F.H. Green, and F.F. Hahn: Influence of exposure concentration or dose on the distribution of particulate material in rat and human lungs. Environ. Health Perspect. 109(4):311–318 (2001).
  • Morrow, P.E.: Possible mechanisms to explain dust overloading of the lungs. Fundam. Appl. Toxicol. 10(3):369–384 (1988).
  • Muhle, H., O. Creutzenberg, B. Bellmann, U. Heinrich, and R. Mermelstein: Dust overloading of lungs: investigations of various materials, species-differences, and irreversibility of effects. J. Aerosol. Med. 3(Suppl 1):S111–S128 (1990).
  • Kuempel, E.D., and C.L. Tran: Comparison of human lung dosimetry models: implications for risk assessment. Ann. Occup. Hyg. 46(Suppl 1):337–341 (2002).
  • Gregoratto, D., M.R. Bailey, and J.W. Marsh: Modelling particle retention in the alveolar-interstitial region of the human lungs. J. Radiol. Prot. 30(3):491–512 (2010).
  • Gregoratto, D., M.R. Bailey, and J.W. Marsh: Particle clearance in the alveolar-interstitial region of the human lungs: model validation. Radiat. Prot. Dosimetry 144(1–4):353–356 (2011).
  • Bailey, M.R., E. Ansoborlo, R.A. Guilmette, and F. Paquet: Updating the ICRP human respiratory tract model. Radiat. Prot. Dosimetry 127(1-4):31–34 (2007).
  • Kuempel, E.D., E.J. O’Flaherty, L.T. Stayner, R.J. Smith, F.H. Green, and V. Vallyathan: A biomathematical model of particle clearance and retention in the lungs of coal miners. I. Model development. Regul. Toxicol. Pharmacol. 34(1):69–87 (2001).
  • Kuempel, E.D., C.L. Tran, R.J. Smith, and A.J. Bailer: A biomathematical model of particle clearance and retention in the lungs of coal miners. II. Evaluation of variability and uncertainty. Regul. Toxicol. Pharmacol. 34(1):88–101 (2001).
  • Sweeney, L.M., A. Parker, L.T. Haber, C.L. Tran, and E.D. Kuempel: Application of Markov chain Monte Carlo analysis to biomathematical modeling of respirable dust in US and UK coal miners. Regul. Toxicol. Pharmacol. 66(1):47–58 (2013).
  • International Agency for Research on Cancer (IARC): “IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 93: Carbon Black, Titanium Dioxide, and Talc.” 2010. Available at http://monographs.iarc.fr/ENG/Monographs/vol93/mono93.pdf (accessed March 27, 2013).
  • NIOSH: “Current Intelligence Bulletin 63: Occupational Exposure to Titanium Dioxide.” 2011. Available at http://www.cdc.gov/niosh/docs/2011-160/pdfs/2011-160.pdf (accessed July 16, 2012).
  • CIIT Centers for Health Research, and RIVM: “Multiple-path particle dosimetry (MPPD, version 2.0): A model for human and rat airway particle dosimetry,” by CIIT Centers for Health Research and the National Institute for Public Health and the Environment (RIVM), Research Triangle Park, NC, 2006.
  • Anjilvel, S., and B. Asgharian: A multiple-path model of particle deposition in the rat lung. Fundam. Appl. Toxicol. 28(1):41–50 (1995).
  • Asgharian, B., W. Hofmann, and R. Bergmann: Particle deposition in a multiple-path model of the human lung. Aerosol. Sci. Tech. 34:332–339 (2001).
  • Asgharian, B., O. Price, G. McClellan et al.: Development of a rhesus monkey lung geometry model and application to particle deposition in comparison to humans. Inhal. Toxicol. 24(13):869–899 (2012).
  • Kuempel, E.D.: Estimating Nanoparticle Dose in Humans: Issues and Challenges. In Nanotoxicology: Characterization, Dosing and Health Effects, N.A. Monteiro-Riviere and C.L. Tran (eds.). New York: Informa Healthcare, 2007. pp. 141–152.
  • Asgharian, B., and O.T. Price: Deposition of ultrafine (nano) particles in the human lung. Inhal. Toxicol. 19(13):1045–1054 (2007).
  • Semmler, M., J. Seitz, F. Erbe et al. : Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhal. Toxicol. 16(6–7):453–459 (2004).
  • Semmler-Behnke, M., S. Takenaka, S. Fertsch et al.: Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airways epithelium. Environ. Health Perspect. 115(5):728–733 (2007).
  • Takenaka, S., W. Möller, M. Semmler-Behnke et al.: Efficient internalization and intracellular translocation of inhaled gold nanoparticles in rat alveolar macrophages. Nanomedicine (Lond) 7(6):855–865 (2012).
  • Geiser, M., and W.G. Kreyling: Deposition and biokinetics of inhaled nanoparticles. Part. Fibre Toxicol. 7:2 (2010).
  • Geiser, M., B. Rothen-Rutishauser, N. Kapp et al.: Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ. Health Perspect. 113(11):1555–1560 (2005).
  • Fertsch-Gapp, S., M. Semmler-Behnke, A. Wenk, and W.G. Kreyling: Binding of polystyrene and carbon black nanoparticles to blood serum proteins. Inhal. Toxicol. 23(8):468–475 (2011).
  • Kreyling, W.G., M. Semmler-Behnke, J. Seitz et al.: Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal. Toxicol. 21(Suppl 1):55–60 (2009).
  • Kreyling, W.G., M. Semmler, F. Erbe et al.: Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J. Toxicol. Environ. Health A 65(20):1513–1530 (2002).
  • Oberdörster, G., Z. Sharp, V. Atudorei et al.: Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J. Toxicol. Environ. Health A 65(20):1531–1543 (2002).
  • Sweeney L.M., L. MacCalman, L.T. Haber, E.D. Kuempel, and C.L. Tran: Bayesian evaluation of a physiologically-based pharmacokinetic (PBPK) model of long-term kinetics of metal nanoparticles in rats. Regul. Toxicol. Pharmacol. 73(1):151–163 (2015).
  • Oberdörster, G., E. Oberdörster, and J. Oberdörster: Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113(7):823–839 (2005).
  • Oberdörster, G., Z. Sharp, V. Atudorei et al.: Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 16(6–7):437–445 (2004).
  • Sunderman, F.W., Jr.: Nasal toxicity, carcinogenicity, and olfactory uptake of metals. Ann. Clin. Lab. Sci. 31(1):3–24 (2001).
  • Elder, A., R. Gelein, V. Silva et al.: Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect. 114(8):1172–1178 (2006).
  • Wang, S.M., K. Inthavong, J. Wen, J.Y. Tu, and C.L. Xue: Comparison of micron- and nanoparticle deposition patterns in a realistic human nasal cavity. Respir. Physiol. Neurobiol. 166(3):142–151 (2009).
  • Garcia, G.J., and J.S. Kimbell: Deposition of inhaled nanoparticles in the rat nasal passages: dose to the olfactory region. Inhal. Toxicol. 21(14):1165–1175 (2009).
  • Baron, P.A.: Application of the thoracic sampling definition to fiber measurement. Am. Ind. Hyg. Assoc. J. 57(9):820–824 (1996).
  • Yu, C.P., and B. Asgharian: Mathematical Models of Fiber Deposition in the Lung. In Fiber Toxicology, D.B. Warheit (ed.). San Diego: Academic Press Inc, 1993. pp. 73–98.
  • Sturm, R.: A computer model for the simulation of fiber–cell interaction in the alveolar region of the respiratory tract. Comput. Biol. Med. 41:565–573 (2011).
  • Asgharian, B., and C.P. Yu: Deposition of inhaled fibrous particles in the huan lung. J. Aerosol. Med. 1(1):37–50 (1988).
  • Asgharian, B., and C.P. Yu: Deposition of fibers the rat lung. J. Aerosol. Sci. 20(3):355–366 (1989).
  • Asgharian, B., and C.P. Yu: A simplified model of interceptional deposition of fibers at airway bifurcations. Aerosol. Sci. Tech. 11:80–88 (1989).
  • Asgharian, B., and S. Anjilvel: A multiple-path model of fiber deposition in the rat lung. Toxicol. Sci. 44(1):80–86 (1998).
  • Yu, C.P., Y.J. Ding, L. Zhang et al. : Retention modeling of refractory ceramic fibers (RCF) in humans. Regul. Toxicol. Pharmacol. 25(1):18–25 (1997).
  • Yu, C.P., L. Zhang, G. Oberdorster, R.W. Mast, L.R. Glass, and M.J. Utell: Clearance of refractory ceramic fibers (RCF) from the rat lung: development of a model. Environ. Res. 65(2):243–253 (1994).
  • Tran, C.L., A.D. Jones, B.G. Miller, and K. Donaldson: Modeling the retention and clearance of manmade vitreous fibers in the rat lung. Inhal. Toxicol. 15(6):553–587 (2003).
  • Andersen, M.E., and A.M. Jarabek: Nasal tissue dosimetry issues and approaches for “Category 1” gases: A report on a meeting held in Research Triangle Park, NC, 11–12 February, 1998. Inhal. Toxicol. 13(5):415–436 (2001).
  • Nodelman, V., and J.S. Ultman: Longitudinal distribution of chlorine absorption in human airways: a comparison to ozone absorption. J. Appl. Physiol. 87(6):2073–2080 (1999).
  • Chang, L.Y., Y. Huang, B.L. Stockstill et al.: Epithelial injury and interstitial fibrosis in the proximal alveolar regions of rats chronically exposed to a simulated pattern of urban ambient ozone. Toxicol. Appl. Pharmacol. 115(2):241–252 (1992).
  • Ferng, S.F., C.E. Castro, A.A. Afifi, E. Bermúdez, and M.G. Mustafa: Ozone-induced DNA strand breaks in guinea pig tracheobronchial epithelial cells. J. Toxicol. Environ. Health 51(4):353–367 (1997).
  • U.S. Environmental Protection Agency: “2009 Status Report: Advances in Inhalation Dosmimetry of Gases and Vapors with Portal of Entry Effects in the Upper Respiratory Tract.” 2009. Available at http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid = 212131 (accessed August 19, 2014).
  • Gargas, M.L., R.J. Burgess, D.E. Voisard, G.H. Cason, and M.E. Andersen: Partition coefficients of low-molecular-weight volatile chemicals in various liquids and tissues. Toxicol. Appl. Pharmacol. 98(1):87–99 (1989).
  • Peyret, T., and K. Krishnan: QSARs for PBPK modelling of environmental contaminants. SAR QSAR Environ. Res. 22(1–2):129–169 (2011).
  • OSHA: “Occupational Exposure to Methylene Chloride.” 1997. Available at http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=FEDERAL_REGISTER&p_id=13600 (accessed August 19, 2014).
  • Clewell, H.J., J.M. Gearhart, and M.E. Andersen: Analysis of the Metabolism of Methylene Chloride in the B6C3F1 Mouse and its Implications for Human Carcinogenic Risk. Wright-Patterson Air Force Base, OH: Department of the Navy, Naval Medical Research Institute, submitted to Mr. Tom Hall, Occupational Safety and Health Administration (OSHA), Division of Consumer Affairs, Washington, DC, January 15, 1993. OSHA Docket #H-071, Exhibit #96., 1993.
  • David, R.M., H.J. Clewell, P.R. Gentry, T.R. Covington, D.A. Morgott, and D.J. Marino: Revised assessment of cancer risk to dichloromethane II. Application of probabilistic methods to cancer risk determinations. Regul. Toxicol. Pharmacol. 45(1):55–65 (2006).
  • Evans, M.V., and J.C. Caldwell: Evaluation of two different metabolic hypotheses for dichloromethane toxicity using physiologically based pharmacokinetic modeling for in vivo inhalation gas uptake data exposure in female B6C3F1 mice. Toxicol. Appl. Pharmacol. 244(3):280–290 (2010).
  • Morris, J.B.: Biologically-based modeling insights in inhaled vapor absorption and dosimetry. Pharmacol. Ther. 136(3):401–413 (2012).
  • Morris, J.B.: Uptake of styrene in the upper respiratory tract of the CD mouse and Sprague-Dawley rat. Toxicol. Sci. 54(1):222–228 (2000).
  • Morris, J.B., and A.R. Buckpitt: Upper respiratory tract uptake of naphthalene. Toxicol. Sci. 111(2):383–391 (2009).
  • Struve, M.F., V.A. Wong, M.W. Marshall, J.S. Kimbell, J.D. Schroeter, and D.C. Dorman: Nasal uptake of inhaled acrolein in rats. Inhal. Toxicol. 20(3):217–225 (2008).
  • Sarangapani, R., H.J. Clewell, G. Cruzan, and M.E. Andersen: Comparing respiratory-tract and hepatic exposure-dose relationships for metabolized inhaled vapors: a pharmacokinetic analysis. Inhal. Toxicol. 14(8):835–854 (2002).
  • Schroeter, J.D., J.S. Kimbell, M.E. Andersen, and D.C. Dorman: Use of a pharmacokinetic-driven computational fluid dynamics model to predict nasal extraction of hydrogen sulfide in rats and humans. Toxicol. Sci. 94(2):359–367 (2006).
  • Schroeter, J.D., J.S. Kimbell, A.M. Bonner, K.C. Roberts, M.E. Andersen, and D.C. Dorman: Incorporation of tissue reaction kinetics in a computational fluid dynamics model for nasal extraction of inhaled hydrogen sulfide in rats. Toxicol. Sci. 90(1):198–207 (2006).
  • Sarangapani, R., J.G. Teeguarden, G. Cruzan, H.J. Clewell, and M.E. Andersen: Physiologically based pharmacokinetic modeling of styrene and styrene oxide respiratory-tract dosimetry in rodents and humans. Inhal. Toxicol. 14(8):789–834 (2002).
  • Gloede, E., J.A. Cichocki, J.B. Baldino, and J.B. Morris: A validated hybrid computational fluid dynamics-physiologically based pharmacokinetic model for respiratory tract vapor absorption in the human and rat and its application to inhalation dosimetry of diacetyl. Toxicol. Sci. 123(1):231–246 (2011).
  • Frederick, C.B., M.L. Bush, L.G. Lomax et al.: Application of a hybrid computational fluid dynamics and physiologically based inhalation model for interspecies dosimetry extrapolation of acidic vapors in the upper airways. Toxicol. Appl. Pharmacol. 152(1):211–231 (1998).
  • Frederick, C.B., L.G. Lomax, K.A. Black et al.: Use of a hybrid computational fluid dynamics and physiologically based inhalation model for interspecies dosimetry comparisons of ester vapors. Toxicol. Appl. Pharmacol. 183(1):23–40 (2002).
  • Morris, J.B., and A.F. Hubbs: Inhalation dosimetry of diacetyl and butyric acid, two components of butter flavoring vapors. Toxicol. Sci. 108(1):173–183 (2009).
  • Morris, J.B., B. Asgharian, and J.S. Kimbell: Upper Airway Dosimetry of Gases, Vapors, and Particulate Matter in Rodents. In Toxicology of the Nose and Upper Airways, J.B. Morris and D.J. Shusterman (eds.). New York: Informa Healthcare, 2010. pp. 99–115.
  • Gerde, P., and A.R. Dahl: A model for the uptake of inhaled vapors in the nose of the dog during cyclic breathing. Toxicol. Appl. Pharmacol. 109(2):276–288 (1991).
  • Johanson, G.: Modelling of respiratory exchange of polar solvents. Ann. Occup. Hyg. 35(3):323–339 (1991).
  • Kumagai, S., and I. Matsunaga: A lung model describing uptake of organic solvents and roles of mucosal blood flow and metabolism in the bronchioles. Inhal. Toxicol. 12(6): 491–510 (2000).
  • Maier, A., T.J. Lentz, K. MacMahon, L.T. McKernan, C. Whittaker, and P.A. Schulte: State-of-the-science: The evolution of occupational exposure limit derivation and application. J. Occup. Environ. Hyg. (2015).
  • Bessems, J.G., and L. Geraets: Proper knowledge on toxicokinetics improves human hazard testing and subsequent health risk characterisation. A case study approach. Regul. Toxicol. Pharmacol. 67:325–334 (2013).
  • Peters, S.A.: Identification of intestinal loss of a drug through physiologically based pharmacokinetic simulation of plasma concentration-time profiles. Clin. Pharmacokinet. 47(4):245–259 (2008).
  • Naumann, B.D., P.A. Weideman, R. Sarangapani, S.C. Hu, R. Dixit, and E.V. Sargent: Investigations of the use of bioavailability data to adjust occupational exposure limits for active pharmaceutical ingredients. Toxicol. Sci. 112(1):196–210 (2009).
  • Rennen, M.A., T. Bouwman, A. Wilschut, J.G. Bessems, and C.D. Heer: Oral-to-inhalation route extrapolation in occupational health risk assessment: a critical assessment. Regul. Toxicol. Pharmacol. 39(1):5–11 (2004).
  • Andersen, M.E., M.G. MacNaughton, H.J. Clewell III, and D.J. Paustenbach: Adjusting exposure limits for long and short exposure periods using a physiological pharmacokinetic model. Am. Ind. Hyg. Assoc. J. 48(4):335–343 (1987).
  • Fiserova-Bergerova, V.: Application of toxicokinetic models to establish biological exposure indicators. Ann. Occup. Hyg. 34(6):639–651 (1990).
  • Droz, P.O.: The use of simulation models for setting BEIs for organic solvents. Annals of the American Conference of Governmental Industrial Hygiesnists 12:339–350 (1985).
  • Verner, M.A., R. McDougall, and G. Johanson: Using population physiologically based pharmacokinetic modeling to determine optimal sampling times and to interpret biological exposure markers: The example of occupational exposure to styrene. Toxicol. Lett. 213(2):299–304 (2012).
  • International Programme on Chemical Safety (IPCS): “Environmental Health Criteria 170: Assessing Human Health Risks of Chemicals: Derivation of Guidance Values for Health-based Exposure Limits.” 1994. Available at http://www.inchem.org/documents/ehc/ehc/ehc170.htm (accessed March 28, 2013).
  • Lipscomb, J.C., M.E. Meek, K. Krishnan, G.L. Kedderis, H. Clewell, and L. Haber: Incorporation of pharmacokinetic and pharmacodynamic data into risk assessments. Toxicol. Mech. Meth. 14(3):145–158 (2004).
  • Hattis, D., P. Banati, and R. Goble: Distributions of individual susceptibility among humans for toxic effects. How much protection does the traditional tenfold factor provide for what fraction of which kinds of chemicals and effects? Ann. NY Acad. Sci. 895:286–316 (1999).
  • Hattis, D., and K. Silver: Human interindividual variability–a major source of uncertainty in assessing risks for noncancer health effects. Risk Anal. 14(4):421–431 (1994).
  • Hissink, A.M., B.M. Kulig, J. Kruse et al.: Physiologically based pharmacokinetic modeling of cyclohexane as a tool for integrating animal and human test data. Int. J. Toxicol. 28(6):498–509 (2009).
  • Poet, T.S., C.R. Kirman, M. Bader, C. van Thriel, M.L. Gargas, and P.M. Hinderliter: Quantitative risk analysis for N-methyl pyrrolidone using physiologically based pharmacokinetic and benchmark dose modeling. Toxicol. Sci. 113(2):468–482 (2010).
  • Hallock, M.F., K.S. Hammond, E.M. Kenyon, T.J. Smith, and E.R. Smith: Assessment of task and peak exposures to solvents in the microelectronics fabrication industry. Appl. Occup. Environ. Hyg. 8:945–954 (1993).
  • Delic, J.I., P.D. Lilly, A.J. MacDonald, and G.D. Loizou: The utility of PBPK in the safety assessment of chloroform and carbon tetrachloride. Regul. Toxicol. Pharmacol. 32(2):144–155 (2000).
  • Aylward, L.L., R.A. Becker, C.R. Kirman, and S.M. Hays: Assessment of margin of exposure based on biomarkers in blood: an exploratory analysis. Regul. Toxicol. Pharmacol. 61(1):44–52 (2011).
  • Bernillon, P., and F.Y. Bois: Statistical issues in toxicokinetic modeling: a bayesian perspective. Environ. Health Perspect. 108 Suppl 5:883–893 (2000).
  • Thomas, R.S., P.L. Bigelow, T.J. Keefe, and R.S. Yang: Variability in biological exposure indices using physiologically based pharmacokinetic modeling and Monte Carlo simulation. Am. Ind. Hyg. Assoc. J. 57(1):23–32 (1996).
  • DeBord, D.G., L. Burgon, S. Edwards et al.: Systems biology and biomarkers of early effects for occupational exposure limit setting. J. Occup. Environ. Hyg. (2015).
  • Donaldson, K., P.J. Borm, G. Oberdörster, K.E. Pinkerton, V. Stone, and C.L. Tran: Concordance between in vitro and in vivo dosimetry in the proinflammatory effects of low-toxicity, low-solubility particles: the key role of the proximal alveolar region. Inhal. Toxicol. 20(1):53–62 (2008).
  • Rushton, E.K., J. Jiang, S.S. Leonard et al.: Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J. Toxicol. Environ. Health A 73(5):445–461 (2010).
  • Teeguarden, J.G., P.M. Hinderliter, G. Orr, B.D. Thrall, and J.G. Pounds: Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments (Erratum in: Toxicol. Sci. 97(2)). Toxicol. Sci. 95(2):300–312 (2007).
  • Hinderliter, P.M., K.R. Minard, G. Orr et al.: ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part. Fibre Toxicol. 736 (2010).
  • Louisse, J., E. de Jong, J.J. van de Sandt et al.: The use of in vitro toxicity data and physiologically based kinetic modeling to predict dose-response curves for in vivo developmental toxicity of glycol ethers in rat and man. Toxicol. Sci. 118(2):470–484 (2010).
  • Han, X., N. Corson, P. Wade-Mercer et al.: Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data. Toxicology 297(1–3):1–9 (2012).
  • Gangwal, S., J.S. Brown, A. Wang et al.: Informing selection of nanomaterial concentrations for ToxCast in vitro testing based on occupational exposure potential. Environ. Health Perspect. 119(11):1539–1546 (2011).
  • Oberdörster, G.: Nanotoxicology: in vitro-in vivo dosimetry. Environ. Health Perspect. 120(1):A13; author reply A13 (2012).
  • Wiltse, J.A., and V.L. Dellarco: U.S. Environmental Protection Agency's revised guidelines for carcinogen risk assessment: evaluating a postulated mode of carcinogenic action in guiding dose-response extrapolation. Mutat. Res. 464(1):105–115 (2000).
  • Bogdanffy, M.S., G. Daston, E.M. Faustman et al.: Harmonization of cancer and noncancer risk assessment: proceedings of a consensus-building workshop. Toxicol. Sci. 61(1):18–31 (2001).
  • Loizou, G., M. Spendiff, H.A. Barton et al.: Development of good modelling practice for physiologically based pharmacokinetic models for use in risk assessment: the first steps. Regul. Toxicol. Pharmacol. 50(3):400–411 (2008).
  • McLanahan, E.D., H.A. El-Masri, L.M. Sweeney et al.: Physiologically based pharmacokinetic model use in risk assessment–Why being published is not enough. Toxicol. Sci. 126(1):5–15 (2012).
  • Clewell, R.A., and H.J. Clewell III: Development and specification of physiologically based pharmacokinetic models for use in risk assessment. Regul. Toxicol. Pharmacol. 50(1):129–143 (2008).
  • International Programme on Chemical Safety (IPCS): “Harmonization Project Document No. 9: Characterization and Application of Physiologically Based Pharmacokinetic Models in Risk Assessment.” 2010. Available at http://www.inchem.org/documents/harmproj/harmproj/harmproj9.pdf (accessed August 19, 2014).
  • Oberdörster, G.: Dosimetric principles for extrapolating results of rat inhalation studies to humans, using an inhaled Ni compound as an example. Health Phys. 57(Suppl 1):213–220 (1989).
  • Kuempel, E.D., C.L. Tran, V. Castranova, and A.J. Bailer: Lung dosimetry and risk assessment of nanoparticles: evaluating and extending current models in rats and humans. Inhal. Toxicol. 18(10):717–724 (2006).
  • Reitz, R.H., A.L. Mendrala, and F.P. Guengerich: In vitro metabolism of methylene chloride in human and animal tissues: use in physiologically based pharmacokinetic models. Toxicol. Appl. Pharmacol. 97(2):230–246 (1989).
  • Gerrity, T.R., C.J. Henry, and R. Bronaugh: Summary report of the workshops on principles of route-to-route extrapolation for risk assessment. In Principles of Route-to-Route Extrapolation for Risk Assessment, Proceedings of the Workshops: . March and July, Hilton Head, SC and Durham, NC, T.R. Gerrity and C.J. Henry (eds.). New York: Elsevier Science Publishing Co. Inc., 1990. pp. 1–12.
  • Asgharian, B., O.T. Price, M. Oldham et al.: Computational modeling of nanoscale and microscale particle deposition, retention and dosimetry in the mouse respiratory tract. Inhal. Toxicol. 26(14):829–842 (2014).
  • International Commission on Radiological Protection (ICRP): Basic Anatomical and Physiological Data for Use in Radiological Protection Reference Values. Tarrytown, NY: Elsevier Science Ltd, 2002.
  • Brown, R.P., M.D. Delp, S.L. Lindstedt, L.R. Rhomberg, and R.P. Beliles: Physiological parameter values for physiologically based pharmacokinetic models. Toxicol. Ind. Health 13(4):407–484 (1997).
  • Davies, B., and T. Morris: Physiological parameters in laboratory animals and humans. Pharm. Res. 10(7):1093–1095 (1993).
  • Mercer, R.R., M.L. Russell, V.L. Roggli, and J.D. Crapo: Cell number and distribution in human and rat airways. Am. J. Respir. Cell Mol. Biol. 10(6):613–624 (1994).
  • Stone, K.C., R.R. Mercer, P. Gehr, B.L. Stockstill, and J.D. Crapo: Allometric relationships of cell numbers and size in the mammalian lung. Am. J. Respir. Cell Mol. Biol. 6:235–243 (1992).
  • ACGIH: Particle Size-Selective Sampling in The Workplace. Report of the ACGIH Technical Committee on Air Sampling Procedures. Cincinnati, OH: American Conference of Governmental Industrial Hygienists, 1984.
  • Bachler G., N. von Goetz, and K. Hungerbühler: A physiologically based pharmacokinetic model for ionic silver and silver nanoparticles. Int. J. Nanomedicine 8:3365–3382 (2013).