920
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Quartz dustiness: A key factor in controlling exposure to crystalline silica in the workplace

, , , &

References

  • Castranova, V., W.E. Walker, and V. Vallyathan: Silica and Silica-induced Lung Diseases. Boca Raton, FL: CRC Press, 1995.
  • Goldsmith, D.F.: Does occupational silica exposure or silicosis cause lung cancer? Ann. Occup. Hyg. 41:475–479 (1997).
  • Donaldson, K., and P.J. Borm: The quartz hazard: a variable entity. Ann. Occup. Hyg. 42:287–294 (1998).
  • Adamis, Z., E. Tatrai, K. Honma, E. Six, and G. Ungvary: In vitro and in vivo tests for determination of the pathogenicity of quartz, diatomaceous earth, mordenite and clinoptilolite. Ann. Occup. Hyg. 44:67–74 (2000).
  • Soutar, C.A., A. Robertson, B.G. Miller, A. Searl, and J. Bignon: Epidemiological evidence on the carcinogenicity of silica: factors in scientific judgement. Ann. Occup. Hyg. 44:3–14 (2000).
  • Amadori, D.: Silicosis and carcinogenesis. Ceramica Acta. 13:68–77 (2001). (in Spanish)
  • Clouter, A., D. Brown, D. Höhr, P. Born, and K. Donaldson: Inflammatory effects of respirable quartz collected in workplaces versus standard DQ12 quartz: particle surface correlates. J. Toxicol. Sci. 63:90–98 (2001).
  • Leung, C.C., I.T.S. Yu, and W. Chen: Silicosis. Lancet 379:2008–18 (2012).
  • International Agency for Research on Cancer (IARC): IARC working group on the evaluation of carcinogenic risks to humans: silica, some silicates, coal dust and para-aramid fibrils. IARC Monogr. Eval. Carcinog. Risks. Hum. 68:1–475 (1997).
  • Scientific Committee on Occupational Exposure Limits (SCOEL): Recommendation from the Scientific Committee on Occupational Exposure Limits for Silica, Crystalline (respirable dust). SCOEL/SUM/94-final, 2002.
  • Spanish National Institute of Safety and Hygiene at Work (INSHT): “LEP 2015.” Available at http://www.insht.es/portal/site/Insht/ (accessed April, 2015). (in Spanish)
  • Bang, B.E., and H. Suhr: Quartz exposure in the slate industry in northern Norway. Ann. Occup. Hyg. 42:557–563 (1998).
  • Fulekar, M.H.: Occupational exposure to dust in quartz manufacturing industry. Ann. Occup. Hyg. 43:269–273 (1999).
  • Lumens, M.E., and T. Spee: Determinants of exposure to respirable quartz dust in the construction industry. Ann. Occup. Hyg. 45:585–595 (2001).
  • European Network for Silica (NEPSI): “Good Practice Guide on Workers Health Protection through the Good Handling and Use of Crystalline Silica and Products Containing It.” Available at www.nepsi.eu (accessed April, 2015).
  • Monfort, E., M.J. Ibáñez, A. Escrig, et al.: Respirable crystalline silica in the ceramics industries sampling, exposure and toxicology. cfi/Ber. DKG 85:36–42 (2008).
  • Monfort, E., M.J. Ibáñez, and A. Escrig: The Respirable Crystalline Silica in the Cramic Industires. In Safety, Reliability and Risk Analysis: Theory, Methods and Applications, S. Martorell, C.G. Soares, J. Barnett (eds.). London: Taylor and Francis, 2009. pp. 2743–2746.
  • European Network for Silica (NEPSI): “Agreement on Workers' Health Protection Through the Good Handling and Use of Crystalline Silicas and Products Containing It.” Available at www.nepsi.eu (accessed April, 2015).
  • International Agency for Research on Cancer (IARC): IARC Monographs on the evaluation of the carcinogenic risk of chemicals to humans: A review of human carcinogens. Part C: Arsenic, metals, fibres, and dusts. IARC Monogr. (2012). pp. 196–211.
  • Monfort, E., A. Mezquita, E. Vaquer, et al.: Ceramic Manufacturing Processes: Energy, Environmental, and Occupational Health Issues. In Comprehensive Materials Processing. Amsterdam: Elsevier, 2014. Vol. 8, pp. 71–102.
  • Healy, C.B., M.A. Coggins, M. Van Tongeren, et al.: Determinants of respirable crystalline silica exposure among stoneworkers involved in stone restoration work. Ann. Occup. Hyg. 58:6–18 (2014).
  • Radnoff, D.L., and M.K. Kutz: Exposure to crystalline silica in abrasive blasting operations where silica and non-silica abrasives are used. Ann. Occup. Hyg. 58:19–27 (2014).
  • Van Deurssen, E., A. Pronk, S. Spaan, et al.: Quartz and respirable dust in the Dutch construction industry: a baseline exposure assessment as part of a multidimensional intervention approach. Ann. Occup. Hyg. 58:724–738 (2014).
  • Ziemann, C., O. Creutzenberg, M.J. Ibañez, et al.: Selection of additives for reducing the toxicity of quartz in ceramic compositions. cfi/Ber. DKG 91:63–69 (2015).
  • European Trade Union Confederation (EUTC): “Response to the 2nd Phase Consultation on Directive 2004/37/EC.” Available at http://ec.europa.eu/social/BlobServlet?docId=2179&langId=en (accessed April 2015).
  • European Committee for Standardization (CEN): Workplace Exposure: Measurement of the Dustiness of Bulk Materials; Part 1: Requirements and Choice of Test Methods; Part 2: Rotating Drum Method; Part 3: Continuous Drop Method (EN 15051). [Standard] Brussels, Belgium, 2013.
  • European Committee for Standardization (CEN): Workplace Atmospheres. Size Fraction Definitions for Measurement of Airborne Particles (EN 481). [Standard] Brussels, Belgium, 1992.
  • L'vov, B.V., and V.L. Ugolkov: Kinetics and mechanism of dehydration of kaolinite, muscovite and talc analyzed thermogravimetrically by the third-law method. J. Therm. Anal. Calorim. 82:15–22 (2005).
  • Holland, T.J.B., and R. Powell: An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 29:333–383 (2011).
  • British Occupational Hygiene Society (BOHS): Dustiness Estimation Methods for Dry Material: Part 1, Their Uses and Standardization and Part 2, Towards a Standard Method (Technical Guide No. 4). Norwood, Middlesex, UK: Science Reviews Ltd., 1985.
  • Higman, R.W.: Dustiness testing: A useful tool. Ventilation’85 (1986).
  • Pujara, C.P.: “Determination of Factors That Affect the Generation of Airborne Particles From Bulk Pharmaceutical Powders.” Ph.D. diss., Faculty of Purdue University, Purdue University, West Lafayette, IN, 1997.
  • IPTS, European Commission, 2006: “Reference Document on Best Available Techniques on Emissions from Storage.” Available at http://eippcb.jrc.ec.europa.eu/reference/ (accessed April, 2015).
  • Institut für Gefahrstoff-Forschung (IGF): Staubungsapparatur CDD. Bochum: System IGF Betriebs–und Wartungsanleitung. Manual, 2016. (in German)
  • International Organization for Standardization (ISO): Particle Size Analysis: Laser Diffraction Methods. Part 1: General Principles (ISO 13320-1). [Standard] Switzerland, 2009.
  • Mallol, G., J.L. Amoros, M.J. Orts, and D. Llorens: Densification of monomodal quartz particle beds by tapping. Chem. Eng. Sci. 63:5447–5456 (2008).
  • Fransman, W., J.W. Cherrie, M. Van Tongeren, et al.: Development of a Mechanistic Model for the Advanced REACH Tool (ART). Version 1.5. TNO report 9009 (2013).
  • Pensis, I., J. Mareels, D. Dahmann, and D. Mark: Comparative evaluation of the dustiness of industrial minerals according to European standard EN 15051, 2006. Ann. Occup. Hyg. 54:204–216 (2010).
  • Cowherd, C., M.A. Grelinger, P.J. Englehart, R.F. Kent, and K.F. Wong: An apparatus and methodology for predicting the dustiness of materials, Am. Ind. Hyg. Assoc. J. 50:123–130 (1989).
  • Plinke, M.A.E., D. Leith, M.G. Boundy, and F. Löffler: Dust generation from handling powders in industry. Am. Ind. Hyg. Assoc. J. 56:251–257 (1995).
  • Schofield, C., H.M. Sutton, and K.A.N. Waters: The generation of dust by materials handling operations. J. Powder Bulk Solids Technol. 3:40 (1979).
  • Authier-Martin, M.: Alumina handling dustiness. Essen. Read. Light Met. Alumina Bauxite 1:774–782 (1989).
  • Hsieh, H.P.: Measurement of flowability and dustiness of alumina. Light Met. 139–149 (1987).
  • Upton, S.L., D.J. Hall, and G.W. Marsland: Some experiments on material dustiness. Proceedings of the Aerosol Society Annual Conference, Surrey, UK, April 1990.
  • Plinke, M.A.E, R. Maus, and D. Leith: Experimental examination of factors that affect dust generation by using Heubach and MRI testers. Am. Ind. Hyg. Assoc J. 53:325–330 (1992).
  • López-Lilao, A., M. Bruzi, V. Sanfélix, A. Gozalbo, G. Mallol, and E. Monfort: Evaluation of the dustiness of different kaolin samples. J. Occup. Envrion. Hyg. 12(8):547–554 (2015).
  • Heitbrink, W.A., W.F. Todd, and T.J. Fischbach: Correlation of tests for material dustiness with worker exposure from the bagging of powders. Appl. Industr. Hyg. 4(1):12–16 (1989).
  • Heitbrink, W.A., W.F. Todd, T.C. Cooper, and D.M. O'Brien: The application of dustiness tests to the prediction of worker dust exposure. Am. Ind. Hyg. Assoc J. 51(4):217–223 (1990).
  • Brouwer, D.H., I.H. Links, S.A. De Vreede, and Y. Christopher: Size selective dustiness and exposure; simulated workplace comparisons. Ann. Occup. Hyg. 50(5):445–452 (2006).
  • Pensis, I., F. Luetzenkirchen, B. Friede: SWeRF—A method for estimating the relevant fine particle fraction in bulk materials for classification and labelling purposes. Ann. Occup. Hyg. met076 (2014).
  • Tuomi, T., M. Linnainmaa, V. Väänänen, and K. Reijula: Application of good practices as described by the NEPSI agreement coincides with a strong decline in the exposure to respiratory crystalline silica in finnish workplaces. Ann. Occup. Hyg. 58:806–817 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.