295
Views
5
CrossRef citations to date
0
Altmetric
Department

Application of multi-metric approach to characterization of particle emissions from nanotechnology and non-nanotechnology processes

(Reported By) , (Reported By) , (Reported By) , (Reported By) & (Reported By)

References

  • Asbach, C., H. Fissan, B. Stahlmecke, T. Kuhlbusch, and P. DYH: Conceptual limitations and extensions of lung deposited nanoparticle surface area monitor (NSAM). J. Nanopart. Res. 11:101–109 (2009).
  • Asbach, C., H. Kaminski, H. Fissan, et al.: Comparison of four mobility particle sizers with different time resolution for stationary exposure measurements. J. Nanopart. Res. 11:1593–1609 (2009).
  • Brouwer, D., M. Berges, M. Abbas Virji, et al.: Harmonization of measurement strategies for exposure to manufactured nano-objects; Report of a workshop. Ann. Occup. Hyg. 56(1):1–9 (2012).
  • Methner, M., L. Hodson, and C. Geraci: Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanoparticles - Part A. J. Occup. Environ. Hyg. 7:127–132 (2010).
  • Particle Measuring Systems, Inc.: Basic Guide to Particle Counters and Particle Counting. Available at http://www.pmeasuring.com/wrap/filesApp/BasicGuide/file_1/ver_1317144880/basicguide.pdf (accessed July 21, 2016).
  • Perkins, J.: Modern Industrial Hygiene. vol 1, 2nd ed. Cincinnati, OH: ACGIH, 2008.
  • Schmoll, L., T. Peters, and P. O'Shaughnessy: Use of a condensation particle counter and an optical particle counter to assess the number concentration of engineered nanoparticles. J. Environ. Occup. Hyg. 7:535–545 (2010).
  • Fann, N., A. Lamson, S. Anenberg, K. Wesson, D. Risley, and B. Hubbell: Estimating the national public health burden associated with exposure to ambient PM2.5 and ozone. Risk Anal. 32(1):81–95 (2012).
  • Medina, C., M. Santos-Martinez, A. Radomski, O. Corrigan, and M. Radomski: Nanoparticles: pharmacological and toxicological significance. Br. J. Pharmacol. 150:552–558 (2007).
  • Nemmar, A., M. Hoylaerts, P. Hoet, and B. Nemery: Possible mechanisms of the cardiovascular effects of inhaled particles: systemic translocation and prothrombotic effects. Toxicol. Lett. 149:243–253 (2004).
  • Oberdorster, G., Z. Sharp, V. Atudorei, et al.: Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 16:437–445 (2004).
  • Pope, C., R. Burnett, G. Thurston, et al.: Cardiovascular mortality and long-term exposure to particulate air pollution. Circulation 109:71–77 (2004).
  • Braun-Fahrlander, C., U. Ackermann-Liebrich, J. Schwatz, H. Gnehm, M. Rutishauser, and U. Wanner: Air pollution and respiratory symptoms in preschool children. Am. Rev. Respir. Dis. 145:42–47 (1992).
  • Dockery, D. and C. Pope III: Acute respiratory effects of particulate air pollution. Annual Review of Public Health, 1994. 15: p. 107–132.
  • Dockery, D., F. Speizer, D. Stram, J. Ware, J. Spengler, and B. Ferris: Effects of inhalable particles on respiratory health of children. Am. Rev. Respir. Dis. 139:587–594 (1989).
  • Hoek, G., and B. Brunekreef: Acute effects of a winter air pollution episode n pulmonary function and respiratory symptoms of children. Arch. Environ. Health 48:328–335 (1993).
  • Pope III, C., and D. Dockery: Acute health effects of PM10 pollution on symptomatic and asymptomatic children. Am. Rev. Respir. Dis. 145:1123–1128 (1992).
  • Pope III, C., and R. Kanner: Acute effects of PM10 pollution on pulmonary function of smokers with mild to moderate chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 147:1336–1340 (1993).
  • Pope III, C.: Respiratory hospital admissions associated with PM10 pollution in Utah, Salt Lake, and Cache Valleys. Arch. Environ. Health 46:90–97 (1991).
  • Donaldson, K., X. Li, and W. MacNee: Ultrafine (nanometer) particle mediated lung injury. J. Aerosol Sci. 29(5-6):533–560 (1998).
  • Ibald-Mulli, A., H. Wichmann, W. Kreyling, and A. Peters: Epidemiological evidence on health effects of ultrafine particles. J. Aerosol Med. 15:89–201 (2002).
  • Mark, D.: Occupational Exposure to Nanoparticles and Nanotubes. In Nanotechnology: Consequences for Human Health and the Environment. R. Hester and R. Harrison (eds.). Cambridge: RSC Publishing, 2007.
  • Oberdorster, G., E. Oberdorster, and J. Oberdorster: Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113(7):823–839 (2005).
  • Osunsanya, T., G. Prescott, and A. Seaton: Acute respiratory effects of particles: mass or number? J. Occup. Environ. Med. 58:154–159 (2001).
  • Schutz, J., B. Haliburton, and S. Brown: Developing Workplace Detection and Measurement Techniques for Carbon Nanotubes. Canberra, Australia: Safe Work Australia, 2010.
  • Wichmann, H., and A. Peters: Epidemiological evidence of the effects of ultrafine particle exposure. Philos. Mag. A: Phys. Condens. Matt. Def. Mechan. Propert. 358:2751–2769 (2000).
  • Harford, A., J. Edwards, B. Priestly, and P. Wright: Current OHS best practices for the Australian Nanotechnology industry: A Position Paper by the Nanosafe Australia Network. Melbourne: NanoSafe Australia, 2007.
  • Kumar, P., A. Robins, S. Vardouslakis, and R. Britter: A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls. Atmos. Environ. 44:5035–5052 (2010).
  • Maynard, A., and R. Aitken: Assessing exposure to airborne nanomaterials: Current abilities and future requirements. Nanotoxicology 1(1):26–41 (2007).
  • National Institute for Occupational Safety and Health: Approaches to Safe Nanotechnology: An Information Exchange with NIOSH. 2006. Available at http://www.cdc.gov/niosh/topics/nanotech/safenano/.
  • Brouwer, D., B. Duuren-Stuurman, M. Berges, E. Jankowska, D. Bard, and D. Mark: From workplace air measurement results toward estimates of exposure? Development of a strategy to assess exposure to manufactured nano-objects. J. Nanopart. Res. 11:1867–1881 (2009).
  • Curwin, B., and S. Bertke: Exposure characterization of metal oxide nanoparticles in the workplace. J. Occup. Environ. Hyg. 8:580–587 (2011).
  • Leppänen, M., J. Lyyränen, M. Järvelä, et al.: Exposure to CeO2 nanoparticles during flame spray process. Nanotoxicology 6:643–651 (2012).
  • Pauluhn, J.: Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxciol. Sci. 113:226–242 (2010).
  • Plitzko, S.: Workplace exposure to engineered nanoparticles. Inhal. Toxicol. 21:25–29 (2009).
  • Bello, D., B. Wardle, J. Zhang, et al.: Characterisation of exposures to nanoscale particles and fibers during solid core drilling of hybrid carbon nanotube advanced composites. Int. J. Occup. Envrion. Health 16(4):434–450 (2010).
  • Entink, R., W. Fransman, and D. Brouwer: How to statistically analyze nano exposure measurement results: using an ARIMA time series approach. J. Nanopart. Res. 13:6991–7004 (2011).
  • Maynard, A.: Overview of methods for analysing single ultrafine particles. Philois. Trans. Mathemat. Phys. Eng. Sci. 358(1775):2593–2610 (2000).
  • Methner, M., L. Hodson, A. Dames, and C. Geraci: Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials - Part B: Results of 12 field studies. J. Occup. Environ. Hyg. 7:163–176 (2010).
  • Bau, S., O. Witschger, F. Gensdarmes, and D. Thomas: Determining the count median diameter of nanoaerosols by simultaneously measuring their number and lungdeposited surface area concentrations. J. Nanopart. Res. 15:1–8 (2014).
  • Park, J., G. Ramachandran, P. Raynor, L. Eberley, and G. Olson: Comparing exposure zones by different exposure metrics using statistical parameters: contrast and precision. Ann. Occup. Hyg. 55:1–14 (2010).
  • Park, J., G. Ramachandran, P. Raynor, and S. Kim: Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations. J. Nanopart. Res. 13:4897–4911 (2011).
  • Park, J., G. Ramachandran, P. Raynor, and G. Olson: Determination of particle concentration rankings by spatial mapping of particle surface area, number, and mass concentrations in a restaurant and a die casting plant. J. Occup. Environ. Hyg. 7:466–476 (2010).
  • Ramachandran, G., M. Ostraat, D. Evans et al.: A strategy for assessing workplace exposures to nanomaterials. J. Occup. Environ. Hyg. 8:673–685 (2011).
  • Air Quality and Sustainable Nanotechnology Institute of Energy and Environmental Technology e.V. (IUTA): Federal Institute for Occupational Safety and Health (BAuA), German Social Accident Insurance Institution for Raw Materials and Chemical Industry (BG RCI), German Chemical Industry Association (VCI), Institute for Occupational Safety and Health of the DGUV (IFA), and Research Group Mechanical Process Engineering Institute of Process Engineering and Environmental Technology Technical University Dresden (TUD): Tiered approach to an exposure measurement and assessment of nanoscale aerosols released from engineered nanomaterials in workplace operations. Unpublished work, 2011.
  • Asbach, C., T. Kuhlbusch, H. Kaminski, et al.: nanoGEM. Standard Operating Procedures for Assessing Exposure to Nanomaterials Following a Tiered Approach. Available at http://www.nanopartikel.info/files/methodik/SOPs_aus_Projekten/nanoGEM-SOP_tiered-approach-exposure-assessment-workplace_2012.pdf (accessed 21 July 2016).
  • Japan National Institute of Advanced Industrial Science and Technology (AIST): Final Reports on Risk Assessments of Three Manufactured Nanomaterials. Available at http://www.aist-riss.jp/main/modules/product/nano_rad.html (accessed July 21, 2016).
  • McGarry, P., L. Morawska, L. Knibbs, and H. Morris: Excursion guidance criteria to guide control of peak emission and exposure to airborne engineered particles. J. Occup. Environ. Hyg. 10:640–651 (2013).
  • Organisation of Economic Cooperation and Development: Emission Assessment for the Identification of Sources and Release of Airborne Manufactured Nanomaterials in the Workplace: Compilation of Existing Guidance. ENV/JM/MONO(2009)16, 2009. Available at http://www.oecd.org/dataoecd/15/60/43289645.pdf (accessed July 21, 2016).
  • Osmond-McLeod, M., C. Poland, F. Murphy, et al.: Durability and inflammogenic impact of carbon nanotubes compared with asbestos fibres. Part. Fibre Toxicol. 8:15 (2012).
  • Poland, C.A., R. Duffin, I. Kinloch, et al.: Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature 7:423–428 (2012).
  • Takagi, A., A. Hirose, T. Nishimura, et al.: Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-wall carbon nanotube. J. Toxicol. Sci. 33(1):105–116 (2008).
  • International Commission on Radiological Protection: Human Respiratory Tract Model for Deposition in the Lung (ICRP Publication 66). Ann. ICRP. (UK) 24 Nos. 1–3 Pergamon Press, 1994.
  • TSI Incorporated: Measuring Nanoparticle Exposure: Application Note NSAM-001. 2012 Available at http://www.tsi.com/uploadedFiles/_Site_Root/Products/Literature/Application_Notes/NSAM-001appnote.pdf (accessed June 6, 2015).
  • Hauke, J., and T. Kossowski: Comparison of values of Pearson's and Spearman's correlation coefficients on the same sets of data. Quaestiones Geographicae 30(2):87–93 (2011).
  • Spearman's Rank Correlation: Procedure for Using Spearman's Rank Correlation. Available at http://www.angelfire.com/ga2/ibgeography/spearmans.html (accessed November 13, 2015).
  • Explorable.com: Statistical Correlation. Available at https://explorable.com/statistical-correlation (accessed November 13, 2015).
  • Health Knowledge: Linear Regression and Correlation. 2011 Available at http://www.healthknowledge.org.uk/e-learning/statistical-metods/specialists/linear-regression-correlation (accessed November 13, 2015).
  • Bandyopadhyaya, R., E. Nativ-Roth, O. Regev, and R. Yerushalmi-Rozen: Stabilization of individual carbon nanotubes in aqueous solutions. Nano Lett. 2(1):25–28 (2002).
  • Hilding, J., E. Grulke, Z. Zhang, and F. Lockwood: Dispersion of carbon nanotubes in liquids. J. Dispers. Sci. Technol. 24(1):1–41 (2003).
  • Venediktova, A., V. Bocharov, A. Vlasov et al.: Aqeous suspensions of single-wall carbon nanotubes: degree of aggregation into bundles and optical properties. Opt. Spectrosc. (Translation of Optika i Spektroskopiya) 116(3):418–423 (2014).
  • Baron, P., G. Deye, B. Chen, D. Schwegler-Berry, A. Shvedova, and V. Castranova: Aerosolization of single-walled carbon nanotubes for an inhalation study. Inhal. Toxicol. 20(8):751–760 (2003).
  • Antonini, J.: Health effects of welding. Crit. Rev. Toxicol. 33(1):61–103 (2003).
  • Buonanno, G., L. Morawska, and L. Stabile: Exposure to welding particles in automotive plants. J. Aerosol Sci. 42:295–304 (2011).
  • Lin, C., M. Chen, S. Chang, W. Liao, and H. Chen: Characterisation of amibient particles size in workplace of manufacturing physical fitness equipments. Industr. Health 53:78–84 (2015).
  • Moroni, B., and C. Viti: Grain size, chemistry, and structure of fine and ultrafine particles in stainless steel welding fumes. Aerosol Sci. 40:938–949 (2009).
  • Oprya, M., S. Kiro, A. Worobiec, et al.: Size distributions and chemical properties of welding fumes of inhalable particles. J. Aerosol Sci. 45:50–57 (2012).
  • Yu, I., K. Kim, H. Chang, et al.: Pattern of deposition of stainless steel welding fume particles inhaled into the respiratory systems of Sprague–Dawley rats exposed to a novel welding fume generating system. Toxicol. Lett. 116:103–111 (2000).
  • Zimmer, A., P. Baron, and P. Biswas: The influence of operating parameters on number-weighted aerosol size distribution generated from a gas metal arc welding process. Aerosol Sci. 33(519–531) (2002).
  • He, C., L. Morawska, H. Wang, et al.: Quantification of the relationship between fuser roller temperature and laser printer emissions. J. Aerosol Sci. 41(6):523–530 (2010).
  • He, C., L. Morawski, and L. Taplin: Particle emission characteristics of office printers. Environ. Sci. Technol. 41(17):6039–6045 (2007).
  • Morawska, L., C. He, G. Johnson, et al.: An investigation into the characteristics and formation mechanisms of particles originating from the operation of laser printers. Environ. Sci. Technol. 43(4):1015–1022 (2009).
  • Wang, H., C. He, L. Morawska, P. McGarry, and G. Johnson: Ozone-initiated particle formation, particle aging and precursors in a laser printer. Environ. Sci. Technol. 46(2):704–712 (2012).
  • Ankilov, A., A. Baklanov, M. Colhoun, et al.: Intercomparison of number concentration measurements by various aerosol particle counters. Atmos. Res. 62:177–207 (2002).
  • Asbach, C., H. Kaminski, D. Von Barany, et al.: Comparability of portable nanoparticle exposure monitors. Ann. Occup. Hyg. 56(5):606–621 (2012).
  • Awasthi, A., B. Wu, C. Lu, C. Chen, S. Uang, and C. Tsai: The effect of nanoparticle morphology on the measurement accuracy of mobility particle sizers. J. Metrol. Soc. India 28(3):205–215 (2013).
  • Joshi, M., B. Sapra, A. Khan, S. Tripathi, P. Shamjad, T. Gupta, and Y. Mayya: Harmonisation of nanoparticle concentration measurements using GRIMM and TSI scanning mobility particle sizers. J. Nanopart. Res. 14:1268–1281 (2012).
  • Kaminski, H., T. Kuhlbusch, S. Rath, et al.: Comparability of mobility particle sizers and diffusion chargers. Journal of Aerosol Science 57:156–178 (2013).
  • Leskinen, J., J. Joutsensaari, J. Lyyranen, et al.: Comparison of nanoparticle measurement instruments for occupational health applications. J. Nanopart. Res. 14:718–733 (2012).
  • McGarry, P., L. Morawska, C. He, et al.: Exposure to particles from laser printers operating within office workplaces. Environ. Sci.Technol. 45:6444–6452 (2011).
  • Kuhlbusch, T., C. Asbach, H. Fissan, D. Gohler, and M. Stintz: Nanoparticle exposure at nanotechnology workplaces: a review. Part. Fibre Toxicol. 8(22) provisional version (2011).
  • American Conference of Governmental Industrial Hygienists: Industrial Ventilation: A Manual of Recommended Practice. (24th edition). Cincinnati, Ohio: ACGIH (2001).
  • Drew, R., and T. Hagen: Engineered Nanomaterials: An Update on the Toxicology and Health Hazards. S.W. Australia ( ed.). Commonwealth of Australia, 2015.
  • TSI Incorporated: Choosing the Right CPC for Your Application: Application Note CPC-002(US). 2014. Available at http://www.tsi.com/uploadedFiles/_Site_Root/Products/Literature/Application_Notes/CPC-002-appnote.pdf (accessed 2015).
  • TSI Incorporated: Choosing An Optical Particle Counter: Application Note ITI-095. 2013. Available at http://www.tsi.com/uploadedFiles/_Site_Root/Products/Literature/Application_Notes/iti-095.pdf (accessesd June 5, 2015).
  • TSI Incorporated: DUSTTRAK Aerosol Monitor: Theory of Ooperation - Application Note ITI-036. TSI Incorporated, 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.