1,133
Views
19
CrossRef citations to date
0
Altmetric
Reviews

Automated entry technologies for confined space work activities: A survey

, &

References

  • OSHA: Occupational Safety and Health Standards. General Environmental Controls. Permit-required confined spaces. Publication No. 29 CFR 1910.146 (1993).
  • “Confined spaces.” Available at: https://www.osha.gov/SLTC/confinedspaces/ (accessed December, 2014).
  • Botti, L., V. Duraccio, M. G. Gnoni, and C. Mora: A framework for preventing and managing risks in confined spaces through IOT technologies. Saf. Reliab. Complex. Eng. syst. - Proc. Eur. Saf. Reliab. Conf., 3209–3217 (2015).
  • Sahli, B. P., and C. W. Armstrong: Confined space fatalities in Virginia. J. Occup. Med. 34(9):910–917 (1992).
  • Harris, M. K., W. M. Ewing, W. Longo, et al.: Manganese exposures during Shielded Metal Arc Welding (SMAW) in an enclosed space. J. Occup. Environ. Hyg. 2(8):375–382 (2005).
  • Flynn, M. R. and P. Susi: Manganese, iron, and total particulate exposures to welders. J. Occup. Environ. Hyg. 7(2):115–126 (2010).
  • Meeker, J. D., P. Susi, and M. R. Flynn: Hexavalent chromium exposure and control in welding tasks. J. Occup. Environ. Hyg. 7(11):607–615 (2010).
  • Ye, H.: Atmosphere identifying and testing in confined space. Proc. of the 2011 First International Conference on Instrumentation, Measurement, Computer, Communication and Control, 767–771 (2011).
  • Bellamy, L. J.: Exploring the relationship between major hazard, fatal and non-fatal accidents through outcomes and causes. Saf. Sci. 71(Part B):93–103 (2015).
  • Garmer, K., H. Sjöström, A. M. Hiremath, A. K. Tilwankar, G. Kinigalakis, and S. R. Asolekar: Development and validation of three-step risk assessment method for ship recycling sector. Saf. Sci. 76:175–189 (2015).
  • Wilson, M. P., H. N. Madison, and S. B. Healy: Confined space emergency response: Assessing employer and fire department practices. J. Occup. Environ. Hyg. 9(2):120 (2012).
  • Burlet-Vienney, D., Y. Chinniah, and A. Bahloul: The need for a comprehensive approach to managing confined space entry: Summary of the literature and recommendations for next steps. J. Occup. Environ. Hyg. 11(8):485–498 (2014).
  • Burlet-Vienney, D., Y. Chinniah, A. Bahloul, and B. Roberge: Occupational safety during interventions in confined spaces. Saf. Sci. 79:19–28 (2015).
  • Bizzotto, M.: Ancora incidenti mortali in lughi confinati: 2 morti a Molfetta. cantierinsicurezza.it (2014).
  • HSE INDG258(rev1): “Confined Spaces: A Brief Guide To Working Safely.” Available at: http://www.hse.gov.uk/pubns/indg258.pdf.
  • Pagcatipunan, C.: Cut costs with automated tank cleaning. Industr. Maint. Plant Operat. 64(12):22–23 (2003).
  • Pagcatipunan, C.: Options for automated tank cleaning. Chem. Eng. 110(8):27–32 (2003).
  • Allmaras, S., and L. McGowan: OSHA compliance issues - Sweet or dangerous: A hazard of sugar. J. Occup. Environ. Hyg. 2(4):D22–D24 (2005).
  • Strelec, F.: OSHA compliance issues. Health hazards in a feed mill. J. Occup. Environ. Hyg. 3(11):D116–D119 (2006).
  • Anroedh, K., and L. Mitchell: Leslie: From grain silos to tank cars. Chilton's Industrial Saf. Hyg. News 43(7):39 (2009).
  • Bouchagiar, I.: Choosing the optimum tank cleaning system. Tank Stor. Mag. (2):109–111 (2014).
  • “Modular Tank Cleaning.” Available at http://www.schaefer-hps.com/tank-cleaning-solutions.html (accessed October, 2016).
  • “Spray Cannon.” Available at http://www.schaefer-hps.com/tank-cleaning-solutions.html (Accessed Oct., 2016).
  • “Mobile Tank Cleaning.” Available at http://www.schaefer-hps.com/tank-cleaning-solutions.html (accessed Oct., 2016).
  • “Manway Cannons.” Available at: http://techcorr.com/services/Industrial-Services/Manway-Cannons.cfm (acc-essed July, 2015).
  • “Track Driven Robot Unit.” Available at: http://www.techcorr.com/resources/Brochures/ShowBrochure.cfm?docid=66 (accessed July, 2015).
  • Glass, S. W., and F. C. Klahn: ReTRIEVR, a long-reach robot for tank or silo waste retrieval. Waste Manage. Conf. 2001 WM'01 (2011).
  • Dandan, K., A. Ananiev, and I. Kalaykov: SIRO: The silos surface cleaning robot concept. 2013 IEEE International Conference on Mechatronics and Automation (ICMA), 657–661 (2013).
  • Albitar, H., A. Ananiev, and I. Kalaykov: New concept of in-water surface cleaning robot. 2013 IEEE International Conference on Mechatronics and Automation (ICMA), 1582–1587 (2013).
  • Albitar, H., A. Ananiev, and I. Kalaykov: In-water surface cleaning robot: concept, locomotion and stability. Int. J. Mechatron. Automat/ 4(2):104–115 (2014).
  • Hunter, M., F. Liporace, and S. Hamlett: Automatic mud tank cleaning system cuts costs, risks. Offshore 70(9):66–68 (2010).
  • Ortiz, F., J. A. Pastor, B. Alvarez, et al.: Robots for hull ship cleaning. ISIE 2007. IEEE International Symposium on Industrial Electronics, 2077–2082 (2007).
  • Ye, C., S. Ma, H. Li, and J. Yang: Development of a pipe cleaning robot for air conditioning system. 2010 IEEE International Conference on Robotics and Biomimetics (ROBIO), 1525–1529 (2010).
  • Kovacic, Z., B. Balac, S. Flegaric, K. Brkic, and M. Orsag: Light-weight mobile robot for hydrodynamic treatment of concrete and metal surfaces. 2010 1st International Conference on Applied Robotics for the Power Industry (CARPI), 1–6 (2010).
  • Truong-Thinh, N., N. Ngoc-Phuong, and T. Phuoc-Tho: A study of pipe-cleaning and inspection robot. 2011 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2593–2598 (2011).
  • Saenz, J., N. Elkmann, T. Stuerze, S. Kutzner, and H. Althoff: Robotic systems for cleaning and inspection of large concrete pipes. 2010 1st International Conference on Applied Robotics for the Power Industry (CARPI), 1–7 (2010).
  • Summa, V.: In-service above ground storage tanks inspection robotics technology update. Inspectioneering J. March/April:11–20 (2008).
  • “Short Range Wave Ultrasonic Testing.” Available at: http://www.techcorr.com/short-range-wave-ultrasonic-testing.php (accessed October, 2016).
  • Sakamoto, H., K. Sekine, M. Maeda, and H. Suzuki: Development of improved AE evaluation technique for corrosion damage in bottom plates of above-ground oil tanks in service. J. Jpn. Petrol. Instit. 56(5):298–303 (2013).
  • “Improved Methods Broaden In-service Tank Inspection.” Available at: http://www.ogj.com/articles/print/volume-107/issue-30/Transportation/improved-methods-broaden-in-service-tank-inspection.html (accessed June, 2015).
  • “Camaleonte – Robot Motorizzato per Pulizia, Rilievo Spessori e Sabbiatura di Serbatoi Interrati.” Available at: http://www.petroltecnica.it/camaleonte-robot-motorizzato-per-pulizia-rilievo-spessori-e-sabbiatura-di-serbatoi-interrati-2 (accessed July, 2015).
  • “Ragno.” Available at: http://www.petroltecnica.it/ragno (accessed July, 2015).
  • “Bruco - Automatic Device for Underground Tanks Cleaning No Man Entry.” Available at: http://www.petroltecnica.it/smart-bruco (accessed July, 2015).
  • Marsh, C. P., A. Siddique, B. A. Temple, and V. F. Hock: Fury: robotic in-situ inspection/condition assessment system for underground storage tanks. US Army Corps of Engineers, Engineer Research and Development Center, Construction Engineering Research Laboratory. Available at: http://acwc.sdp.sirsi.net/client/search/asset/1001831 (2004).
  • Kershaw, K., F. Chapron, A. Coin, et al.: Remote inspection, measurement and handling for LHC. Particle Accelerator Conference, 2007. PAC. IEEE, 332–334 (2007).
  • Bogue, R.: The role of robotics in non-destructive testing. Ind. Robot 37(5):421–426 (2010).
  • Tâche, F., W. Fischer, G. Caprari, R. Siegwart, R. Moser, and F. Mondada: Magnebike: A magnetic wheeled robot with high mobility for inspecting complex-shaped structures. J. Field Robot 26(5):453–476 (2009).
  • Weimin, S., J. Gu, and S. Yanjun: Permanent magnetic system design for the wall-climbing robot. 2005 IEEE International Conference on Mechatronics and Automation 4:2078–2083 (2005).
  • Luk, B. L., A. A. Collie, D. S. Cooke, and S. Chen: Walking and climbing service robots for safety inspection of nuclear reactor pressure vessels. Measure. Control 39(2):43 (2006).
  • Idaho National Engineering and Environmental Laboratory: Robotic Tank Inspection End Effector. OST/TMS ID 278 (2000).
  • Savall, J., A. Avello, and L. Briones: Two compact robots for remote inspection of hazardous areas in nuclear power plants. Proc. of the IEEE International Conference on Robotics and Automation 3:1993–1998 (1999).
  • Longo, D. and G. Muscato: A modular approach for the design of the Alicia3 climbing robot for industrial inspection. Ind. Robot 31(2):148–158 (2004).
  • Nelson, B., P. Slebodnick, J. Wegand, D. Lysogorski, and E. J. Lemieux: Corrosion sensors and ISIS: A condition-based approach to the inspection and preservation of tanks and voids on US Navy ships. Nav. Eng. J. 124(1):115–129 (2012).
  • Shang, J., B. Bridge, T. Sattar, S. Mondal, and A. Brenner: Development of a climbing robot for inspection of long weld lines. Ind. Robot 35(3):217–223 (2008).
  • Sànchez, J., F. Vàzquez, and E. Paz: Machine Vision Guidance System for a Modular Climbing Robot used in Shipbuilding. Berlin Heidelberg: Springer, 2006.
  • Eich, M. and T. Vogele: Design and control of a lightweight magnetic climbing robot for vessel inspection. 19th Mediterranean Conference on Control & Automation (MED), 2011, 1200–1205 (2011).
  • Eich, M., F. Bonnin Pascual, E. Garcia Fidalgo, A. Ortiz, G. Bruzzone, Y. Koveos, et al.: A robot application for marine vessel inspection. J. Field Robot. 31(2):319–341 (2014).
  • “Steel Climber.” Available at: http://www.miko.no/steel-climber/(accessed July, 2015).
  • “Jetstream Magnetic Crawler M250.” Available at: http:// www.jetstreameurope.co.uk/products/magnetic-crawler.html (accessed July, 2015).
  • Bibuli, M., G. Bruzzone, G. Bruzzone, et al.: MARC: Magnetic Autonomous Robotic Crawler Development and Exploitation in the MINOAS Project. International Conference on Computers and IT Applications in the Maritime Industries (COMPIT) 2012, 62–75 (2012).
  • Kuntze, H. B., D. Schmidt, H. Haffner, and M. Loh: KARO - A flexible robot for smart sensor-based sewer inspection. Int.No-dig Conf., Hamburg-Messe and Congress GmbH (HMC), 367–374 (1995).
  • Kirkham, R.: PIRAT-A System for Quantitative Sewer Pipe Assessment. Int. J. Robot. Res. 19(11):1033–1053 (2000).
  • Bradbeer, R., K. K. Ku, L. F. Yeung, and K. Y. Lam: An Underwater Camera for Security and Recreational Use. Proc. of the Ninth International Symposium on Consumer Electronics, 2005. (ISCE 2005), 364–368 (2005).
  • Kirchner, F., and J. Hertzberg: A prototype study of an autonomous robot platform for sewerage system maintenance. Auton Robots 4(4):319–331 (1997).
  • Rome, E., J. Hertzberg, F. Kirchner, U. Licht, and T. Christaller: Towards autonomous sewer robots: the MAKRO project. Urban Water 1(1):57–70 (1999).
  • Nassiraei, A. A. F., Y. Kawamura, A. Ahrary, Y. Mikuriya, and K. Ishii: Concept and Design of A Fully Autonomous Sewer Pipe Inspection Mobile Robot KANTARO. 2007 IEEE International Conference on Robotics and Automation, 136–143 (2007).
  • Granosik, G.: Hypermobile robots - The survey. J. Intell. Robot. Syst. 75(1):147–169 (2014).
  • Estrada, E., L. Silveira, E. Gonçalves, N. D. Filho, V. de Oliveira, and S. Botelho: “Autonomous Navigation For Underground Energy Line Inspection Robot.” 2010 1st International Conference On Applied Robotics for the Power Industry (CARPI), Montreal, Canada, October, 5–7, 2010.
  • Elkmann, N., H. Althoff, S. Kutzner, T. Stuerze, J. Saenz, and B. Reimann: Development of Fully Automatic Inspection Systems for Large Underground Concrete Pipes Partially Filled with Wastewater. In: Proc. IEEE International Conference on Robotics and Automation, New York: IEEE, 2007, pp. 130–135.
  • Walter, C., J. Saenz, N. Elkmann, H. Althoff, S. Kutzner, and T. Stuerze: Design considerations of robotic system for cleaning and inspection of large-diameter sewers. J. Field Robot. 29(1):186–214 (2012).
  • Singh, S. P., A. Verma, and A. K. Shrivastava: Design and Development of Robotic Sewer Inspection Equipment Controlled by Embedded Systems. In: First International Conference on Emerging Trends in Engineering and Technology, 2008. ICETET '08, Nagpur, Maharashtra, July 16–18, 2008, pp. 1317–1320.
  • Krasny, D. P.: “The Autonomous Maintenance Robot (AMR) for Confined Space Maintenance Applications.” Naval Engineers Proceedings for Fleet Maintenance & Modernization Symposium, Virginia Beach, VA, September 18–19, 2012.
  • Xu, Z. and P. Ma: A wall-climbing robot for labelling scale of oil tank's volume. Robotica 20(02):209–212 (2002).
  • Guan, Y., H. Zhu, W. Wu, X. Zhou, L. Jiang, C. Cai, et al.: A modular biped wall-climbing robot with high mobility and manipulating function. IEEE/ASME Trans. Mechatron 18(6):1787–1798 (2013).
  • Pathak, M. K., P. Singh, and A. Bansal: Manipulator Arm for Handling of Objects in Confined Spaces. In: Proc. of Conference on Advances in Robotics New York: ACM Association for Comupting Machinery, 2013, pp. 1–8.
  • Goldenberg, A., M. Gryniewski, and T. Campbell: AARM: “A Robot Arm for Internal Operations in Nuclear Reactors.” 2010 1st International Conference on Applied Robotics for the Power Industry (CARPI), Montreal, Canada, october 5–7, 2010.
  • Zhu, H., Y. Guan, W. Wu, L. Zhang, X. Zhou, and H. Zhang: Autonomous pose detection and alignment of suction modules of a biped wall-climbing robot. IEEE/ASME Trans. Mechantron. 20(2):653–662 (2015).
  • Aneziris, O. N., I. A. Papazoglou, and D. Kallianiotis: Occupational risk of tunneling construction. Saf. Sci. 48(8):964–972 (2010).
  • Gonzalez De Santos, P., M. A. Armada, and M. A. Jimenez: Ship building with ROWER. Robot. Automat. Mag. IEEE 7(4):35–43 (2000).
  • Ross, B., J. Bares, and C. Fromme: A semi-autonomous robot for stripping paint from large vessels. Int. J. Robot. Res. 22(7–8 Special Issue):617–626 (2003).
  • Souto, D., A. Faiña, A. Deibe, F. Lopez-Peña, and R. Duro: A robot for the unsupervised grit-blasting of ship hulls. Int. J. Adv. Robot. Syst. 9(82):1–16 (2012).
  • “New Technologies for Underground Pipelines Rehabilitation.” Available at: http://www.foreverpipe.it/eng_index.htm (accessed July, 2015).
  • Botti, L., C. Mora, and A. Regattieri: Improving Ergonomics in the Meat Industry: A Case Study of an Italian Ham Processing Company. IFAC Symposium on Information Control in Manufacturing INCOM 2015 48(3):598–603 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.