753
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Inhalation exposure during spray application and subsequent sanding of a wood sealant containing zinc oxide nanoparticles

, , , , , , & show all

References

  • International Organization for Standardization (ISO): Nanotechnologies-occupational Risk Management Applied to Engineered Nanomaterials. Part 1: Principles and Approaches (ISO/TS 12901-1). [Standard] Geneva, Switzerland: ISO, 2012.
  • Lee, J., S. Mahendra, and P.J. Alvarez: Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano. 4(7):3580–3590 (2010).
  • Oberdörster, G., Z. Sharp, V. Atudorei, et al.: Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 16(6–7):437–445 (2004).
  • Oberdörster, G., E. Oberdörster, and J. Oberdörster: Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113(7):823–839 (2005).
  • Oberdörster, G., V. Stone, and K. Donaldson: Toxicology of nanoparticles: A historical perspective. Nanotoxicology 1(1):2–25 (2007).
  • Louisiana Forest Products Development Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center: “Statistical Overview of the US Wood Preserving Industry: 2007,” R.P. Vlosky, Baton Rouge, LA: Lousiana State University, 2009.
  • Broekhuizen, P., F. Broekhuizen, R. Cornelissen, and L. Reijnders: Use of nanomaterials in the European construction industry and some occupational health aspects thereof. J. Nanopart. Res. 13(2):447–462 (2011).
  • Evans, P., H. Matsunaga, and M. Kiguchi: Large-scale application of nanotechnology for wood protection. Nat. Nanotechnol. 3(10):577 (2008).
  • West, G.H., B.E. Lippy, M.R. Cooper, et al.: Toward responsible development and effective risk management of nano-enabled products in the US construction industry. J. Nanopart. Res. 18(2):1–27 (2016).
  • SaverSystems, Inc: “DEFY Extreme Clear Wood Stain.” Available at http://defywoodstain.com/product/defy-extreme-clear-wood-stain/ (accessed August 26, 2016).
  • Carol, A.C., W.Y. Vina, and A.A. Rachel: Feasibility of Nanozinc Oxide as a Wood Preservative. In Proceedings of American Wood Protection Association, (105). Birmingham, AL: American Wood Protection Association, 2009. pp. 255–260.
  • Clausen, C.A., F. Green, and S.N. Kartal: Weatherability and leach resistance of wood impregnated with nano-zinc oxide. Nanoscale Res. Lett. 5(9):1464 (2010).
  • Auclair, N., B. Riedl, V. Blanchard, and P. Blanchet: Improvement of photoprotection of wood coatings by using inorganic nanoparticles as ultraviolet absorbers. For. Prod. J. 61(1):20 (2011).
  • Freeman, M.H., and C.R. McIntyre: Comprehensive review of copper-based wood preservatives. For. Prod. J. 58(11):6–27 (2008).
  • Eastlake, A., L. Hodson, C. Geraci, and C. Crawford: A critical evaluation of material safety data sheets (MSDSs) for engineered nanomaterials. J. Chem. Health Saf. 19(5):1–8 (2012).
  • Jones, W., A. Gibb, C. Goodier, et al.: Nanomaterials in Construction and Demolition - How can we assess the risk if we don't know where they are? In: 4th International Conference on Safe Production and Use of Nanomaterials ( Nanosafe 2014), F. Tardif and F. Schuster (eds.). Bristol, UK: IOP Publishing, 2015.
  • National Institute for Occupational Safety and Health: Pocket Guide to Chemical Hazards. DHHS (NIOSH) publication no. 2010–168c. US Department of Health and Human Services, CDC, NIOSH, 2010.
  • Cho, W.S., R. Duffin, C.A. Poland, et al.: Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs. Nanotoxicology 6(1):22–35 (2012).
  • Chuang, H.C., H.T. Juan, C.N. Chang, et al.: Cardiopulmonary toxicity of pulmonary exposure to occupationally relevant zinc oxide nanoparticles. Nanotoxicology 8(6):593–604 (2014).
  • Chen, J.K., C.C. Ho, H. Chang, et al.: Particulate nature of inhaled zinc oxide nanoparticles determines systemic effects and mechanisms of pulmonary inflammation in mice. Nanotoxicology 9(1):43–53 (2015).
  • Ho, M., K.Y. Wu, H.M. Chein, L.C. Chen, and T.J. Cheng: Pulmonary toxicity of inhaled nanoscale and fine zinc oxide particles: mass and surface area as an exposure metric. Inhalation Toxicol. 23(14):947–956 (2011).
  • Kuschner, W.G., A. D'Alessandro, H. Wong, and P.D. Blanc: Early pulmonary cytokine responses to zinc oxide fume inhalation. Environ. Res. 75(1):7–11 (1997).
  • Beckett, W.S., D.F. Chalupa, and A. Pauly-Brown: Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults: a human inhalation study. Am. J. Respir. Crit. Care Med. 171(10):1129–1135 (2005).
  • Fine, J.M., T. Gordon, L.C. Chen, et al.: Metal fume fever: characterization of clinical and plasma IL-6 responses in controlled human exposures to zinc oxide fume at and below the threshold limit value. J. Occup. Environ. Med. 39(8):722–726 (1997).
  • Zinc Oxide Fume [MAK Value Documentation, 2002]. In The MAK-Collection for Occupational Health and Safety. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2002. pp. 305–323.
  • Osmond, M.J., and M.J. Mccall: Zinc oxide nanoparticles in modern sunscreens: An analysis of potential exposure and hazard. Nanotoxicology 4(1):15–41 (2010).
  • McKinney, W., M. Jackson, T.M. Sager, et al.: Pulmonary and cardiovascular responses of rats to inhalation of a commercial antimicrobial spray containing titanium dioxide nanoparticles. Inhal. Toxicol. 24(7):447–457 (2012).
  • Chen, B.T., A. Afshari, S. Stone, et al.: Nanoparticles-containing spray can aerosol: characterization, exposure assessment, and generator design. Inhal. Toxicol. 22(13):1072–1082 (2010).
  • Hagendorfer, H., C. Lorenz, R. Kaegi, et al.: Size-fractionated characterization and quantification of nanoparticle release rates from a consumer spray product containing engineered nanoparticles. J. Nanopart. Res. 12(7):2481–2494 (2010).
  • Maynard, A.D.: Are we ready for spray-on carbon nanotubes? Nat. Nanotechnol. 11(6):490–491 (2016).
  • Berger-Preiß, E., A. Boehncke, G. Könnecker, et al.: Inhalational and dermal exposures during spray application of biocides. Int. J. Hyg. Eviron. Health 208(5):357–372 (2005).
  • Koponen, I.K., K.A. Jensen, and T. Schneider: Comparison of dust released from sanding conventional and nanoparticle-doped wall and wood coatings. J. Exposure Sci. Environ. Epidemiol. 21(4):408–418 (2011).
  • Koponen, I.K., K.A. Jensen, and T. Schneider: Sanding dust from nanoparticle-containing paints: Physical characterisation. J. Phys. Conf. Ser. 151(1):012048 (2009).
  • Gomez, V., M. Levin, A.T. Saber, et al.: Comparison of dust release from epoxy and paint nanocomposites and conventional products during sanding and sawing. Ann. Occup. Hyg. 58(8):983–94 (2014).
  • Gohler, D., M. Stintz, L. Hillemann, and M. Vorbau: Characterization of nanoparticle release from surface coatings by the simulation of a sanding process. Ann. Occup. Hyg. 54(6):615–624 (2010).
  • Fransman, W., C. Bekker, P. Tromp, and W.B. Duis: Potential release of manufactured nano objects during sanding of nano-coated wood surfaces. Ann. Occup. Hyg. 60(7):875–884 (2016).
  • Szymczak, W., N. Menzel, and L. Keck: Emission of ultrafine copper particles by universal motors controlled by phase angle modulation. J. Aerosol Sci. 38(5):520–531 (2007).
  • National Institute for Occupational Safety and Health (NIOSH): “Approaches to Safe Nanotechnology: Managing the Health and Safety Concerns Associated with Engineered Nanomaterials,” Publication No. 2009–125, Cincinnati, OH: NIOSH, 2009.
  • Heitbrink, W.A., L.M. Lo, and K.H. Dunn: Exposure controls for nanomaterials at three manufacturing sites. J. Occup. Environ. Hyg. 12(1):16–28 (2015).
  • Methner, M.M.: Engineering case reports. Effectiveness of local exhaust ventilation (LEV) in controlling engineered nanomaterial emissions during reactor cleanout operations. J. Occup. Environ. Hyg. 5(6):D63–D69 (2008).
  • Methner, M.M.: Effectiveness of a custom-fitted flange and local exhaust ventilation (LEV) system in controlling the release of nanoscale metal oxide particulates during reactor cleanout operations. Int. J. Occup. Environ. Health 16(4):475–487 (2010).
  • Engeman, C.D., L. Baumgartner, B.M. Carr: The hierarchy of environmental health and safety practices in the US nanotechnology workplace. J. Occup. Environ. Hyg. 10(9):487–495 (2013).
  • National Institute for Occupational Safety and Health (NIOSH): “Building a Safety Program to Protect the Nanotechnology Workforce: A Guide for Small to Medium-sized Enterprises,” L. Hodson and M. Hull. DHHS (NIOSH) Publication No. 2016-102, Cincinnati, OH: NIOSH, 2016.
  • Rengasamy, S., and B.C. Eimer: Total inward leakage of nanoparticles through filtering facepiece respirators. Ann. Occup. Hyg. 55(3):253–263 (2011).
  • Brochot, C., N. Michielsen, S. Chazelet, and D. Thomas: Measurement of protection factor of respiratory protective devices toward nanoparticles. Ann. Occup. Hyg. 56(5):595–605 (2012).
  • Rengasamy, S., W.P. King, B.C. Eimer, and R.E. Shaffer: Filtration performance of NIOSH-approved N95 and P100 filtering facepiece respirators against 4 to 30 nanometer-size nanoparticles. J. Occup. Environ. Hyg. 5(9):556–564 (2008).
  • Filipe, P., J.N. Silva, R. Silva, et al.: Stratum corneum is an effective barrier to TiO2 and ZnO nanoparticle percutaneous absorption. Skin Pharmacol. Physiol. 22(5):266–275 (2009).
  • Gulson, B., H. Wong, M. Korsch, et al.: Comparison of dermal absorption of zinc from different sunscreen formulations and differing UV exposure based on stable isotope tracing. Sci. Total Environ. 420:313–318 (2012).
  • Gulson, B., M. McCall, M. Korsch, et al.: Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin. Toxicol. Sci. 118(1):140–149 (2010).
  • SaverSystems, Inc: “Material Safety Data Sheet for DEFY Extreme Exterior Wood Stain.” Richmond, IN: SaverSystems, Inc., 8-1-2009.
  • Dragicevic, N., and H.I. Maibach: Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Modification of the Stratum Corneum. Berlin: Springer, 2015. pp. 14–15, 21–22.
  • Draelos, Z.D.: Enhancement of Topical Delivery with Nanocarriers. In Nanotechnology in Dermatology, A. Nasir, A. Friedman, and S. Wang (eds.). New York: Springer, 2013.
  • Schulte, P.A., G. Roth, L.L. Hodson, et al.: Taking stock of the occupational safety and health challenges of nanotechnology: 2000–2015. J. Nanopart. Res. 18(6):1–21 (2016).
  • Brouwer, D., M. Berges, M.A. Virji, et al.: Harmonization of measurement strategies for exposure to manufactured nano-objects; report of a workshop. Ann. Occup. Hyg. 56(1):1–9 (2012).
  • Chen, B.T., D. Schwegler-Berry, A. Cumpston, et al.: Performance of a scanning mobility particle sizer in measuring diverse types of airborne nanoparticles: Multi-walled carbon nanotubes, welding fumes, and titanium dioxide spray. J. Occup. Environ. Hyg. 13(7):501–518 (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.