597
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Characterization of paint dust aerosol generated from mechanical abrasion of TiO2-containing paints

, & ORCID Icon

References

  • Allen, N.S., M. Edge, A. Ortega et al: Degradation and stabilization of polymers and coatings: Nano versus pigmentary titania particles. Polym. Degrad. Stab. 85:927–946 (2004).
  • Carp, O., C. L. Huisman, and A. Reller: Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32:33–177 (2004).
  • Sharma, V.K., R. A. Yngard, and Y. Lin: Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface. 145:83–96 (2009).
  • Gladis, F., A. Eggert, U. Karsten, and R. Schumann: Prevention of biofilm growth on man-made surfaces: Evaluation of antialgal activity of two biocides and photocatalytic nanoparticles. Biofouling. 26:89–101 (2010).
  • Dallas, P., V. K. Sharma, and R. Zboril: Silver polymeric nanocomposites as advanced antimicrobial agents: Classification, synthetic paths, applications, and perspectives. Adv. Colloid Interface. 166:119–135 (2011).
  • Holtz, R.D., B.A. Lima, A.G. Souza Filho, M. Brocchi M, and O.L. Alves: Nanostructured silver vanadate as a promising antibacterial additive to water-based paints. Nanomed. Nanotechnol. 8:935–940 (2012).
  • Hanus, M.J., and A.T. Harris: Nanotechnology innovations for the construction industry. Prog. Mater. Sci. 58:1056–1102 (2013).
  • Schmid, K., and M. Riediker: Use of nanoparticles in Swiss industry: A targeted survey. Environ. Sci. Technol. 42(7):2253–2260 (2008).
  • Hoet. P.H.M., I. Bruske-Hohlfeld, and O.V. Salata: Nanoparticles—Known and unknown health risks. J Nanobiotechnol. 2:12–27 (2004).
  • Oberdörster, G., E. Oberdörster, and J. Oberdörster: Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113:823–839 (2005).
  • Liu, J., H.L. Wong, J. Moselhy, B. Bowen, X.Y. Wu, and M.R. Johnston: Targeting colloidal particulates to thoracic lymph nodes. Lung Cancer. 51:377–386 (2006).
  • Oberdorster, G., Z. Sharp, V. Atudorei et al: Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 16:437–445 (2004).
  • Semmler, M., J. Seitz, P. Mayer, et al: Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhal. Toxicol. 16:453–459 (2004).
  • Dasenbrock, C., L. Peters, O. Creutzenberg, and U. Heinrich: The carcinogenic potency of carbon particles with and without PAH after repeated intratracheal administration in the rat. Toxicol. Lett. 88:15–21 (1996).
  • Driscoll, K.E., J.M. Carter, B.W. Howard, et al: Pulmonary inflammation, chemokine, and mutagenic responses in rats after subchronic inhalation of carbon black. Toxicol. Appl. Pharmacol. 136:327–380 (1996).
  • Shwe, T.T.W., S. Yamamoto, M. Kakeyama, T. Kobayashi, and H. Fujimaki: Effect of intratracheally instillation of ultrafine carbon black on proinflammatory cytokine and chemokine release and mRNA expression in lung and lymph nodes of mice. Toxicol. Appl. Pharmacol. 209:51–61 (2005).
  • Nemmar, A., P.H. Hoet, B. Vanquickenborne, et al: Passage of inhaled particles into the blood circulation in humans. Circulation. 105:411–414 (2002).
  • Liu, G., P. Mena, P.R.L. Harris, R.K. Rolston, G. Perry G, and M.A. Smith: Nanoparticle iron chelators: A new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance. Neurosci. Lett. 406:189–193 (2006).
  • U.S. Department of Labor: Bureau of Labor Statistics (BLS), Occupational Outlook Handbook, 2016–17 Edition, Painters, Construction and Maintenance. Available at https://www.bls.gov/ooh/construction-and-extraction/painters-construction-and-maintenance.htm (accessed June 13, 2017).
  • IARC: Painting, firefighting, and shiftwork. IARC Monogr. Eval. Carcinog. Risks Hum. 98:1–804 (2010).
  • Guha, N., F. Merletti, N.K. Steenland, A. Altieri, V. Cogliano, and K. Straif: Lung cancer risk in painters: A meta-analysis. Environ. Health Perspect. 118:303–312 (2010).
  • U.S. Department of Labor: Bureau of Labor Statistics, Survey of Occupational Injuries and Illnesses, Tables 3, 7 and 8. Available at https://www.bls.gov/news.release/archives/osh2_11102016.pdf (accessed June 13, 2017).
  • Kaukiainen, A., R. Martikainen, R. Riala, K. Reijula, and L. Tammilehto: Work tasks, Chemical exposure and respiratory health in construction painting. Am. J. Ind. Med. 51:1–8 (2008).
  • Kaegi, R., B. Sinnet, S. Zuleeg, et al: Release of silver nanoparticles from outdoor facades. Environ. Pollut. 158:2900–2905 (2010).
  • Al-Kattan, A., A. Wichser, R. Vonbank, et al: Release of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by weathering. Environ. Sci. Process Impacts. 15:2186–2193 (2013).
  • Künniger, T., A.C. Gerecke, A. Ulrich, et al: Release and environmental impact of silver nanoparticles and conventional organic biocides from coated wooden facades. Environ. Poll. 184:464–471 (2014).
  • Fiorentino, B., L. Golanski, A. Guiot, J.-F. Damlencourt, and D. Boutry: Influence of paints formulations on nanoparticles release during their life cycle. J. Nanopart. Res. 17:149 (2015).
  • Koponen, I.M., K.A. Jensen, and T. Schneider: Comparison of dust released from sanding conventional and nanoparticle-doped wall and wood coatings. J. Exp. Sci. Environ. Epidem. 21:408–418 (2011).
  • Gomez, V., M. Levin, E.T. Saber, et al: Comparison of dust release from epoxy and paint nanocomposites and conventional products during sanding and sawing. Ann. Occup. Hyg. 58:983–994 (2014).
  • Gohler, D., M. Stinntz, L. Hillemann, and M. Vorbau: Characterization of nanoparticle release from surface coatings by the simulation of a sanding process. Ann. Occup. Hyg. 54(6):615–624 (2010).
  • U.S. Department of Agriculture: Wood Handbook: Wood as an Engineering Material (General Technical Report FPL-GTR-113). Forest Products Laboratory, Madison, WI, March 1999.
  • Jiang, S., A. Van Dyk, A. Maurice, et al: Design colloidal particle morphology and self-assembly for coating applications. Chem. Soc. Rev. 46:3792–3807 (2017).
  • Cooper, M.R., G.H. West, L.G. Burrelli, et al: Inhalation exposure during spray application and subsequent exposure of a wood sealant containing zinc oxide nanoparticles. J. Occup. Environ. Hyg. 14:510–522 (2017).
  • Fransman, W., C. Bekker, P. Tromp, and W.B. Duis: Potential release of manufactured nano objects during sanding of nano-coated wood surfaces. Ann. Occup. Hyg. 60:875–884 (2016).
  • Federation of European Producers of Abrasives: Grain standards. Grains of fused aluminum oxide, silicon carbide and other abrasive materials for coated abrasives: Macrogrits P12 to P220 FEPA. 43-1, 2006.
  • Saber, A.T., I.K. Koponen, K.A. Jensen, et al: Inflammatory and genotoxic effects of sanding dust generated from nanoparticle-containing paints and lacquers. Nanotoxicol. 6(7):776–788 (2011).
  • Donaldson, K., V. Stone, A. Clouter, L. Renwick, and W. MacNee: Ultrafine particles. Occup. Environ. Med. 58:211–216 (2001).
  • Smulders, S., K. Luyts, G. Bradants, et al: Toxicity of nanoparticles embedded in paints compared with pristine nanoparticles in mice. Toxicol. Sci. 141(1):132–140 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.