523
Views
4
CrossRef citations to date
0
Altmetric
Articles

Particle size and metal composition of gouging and lancing fumes

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Flynn, M.R., and P. Susi: Local exhaust ventilation for the control of welding fumes in the construction industry—A literature review. Ann. Occup. Hyg. 56(7):764–776 (2012).
  • International Agency for Research on Cancer: Welding, Molybdenum Trioxide, and Indium Tin Oxide. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 118, World Health Organization (ed.). Lyon, France, 2018. pp. 37–265. Available at http://publications.iarc.fr/569 (accessed May 02, 2019).
  • Platcow, P.A., andG.S. Lyndon: “Part XIII. Manufacturing Industries. Metal Processing and Metal Working Industry. Metal Processing and Metal Working. Welding and Thermal Cutting. International Labour Organization Encyclopaedia of Occupational Health and Safety.” Available at http://www.iloencyclopaedia.org/part-xiii-12343/metal-processing-and-metal-working-industry/metal-processing-and-metal-working/136-metal-processing-and-metal-working/welding-and-thermal-cutting (accessed May 2, 2019).
  • Harris, I.D., J.D. Colt, R.C. Fernicola, C.A. Landry, and C.B. Wilsoncroft: Arc cutting and gouging. In Welding Handbook Volume 2: Welding Processes, Part 1, A. O’Brien (ed.). Miami, FL: American Welding Society, 2004. p. 651.
  • Berlinger, B., U. Skogen, C. Meijer, and Y. Thomassen: Workplace exposure to particulate matter, bio-accessible, and non-soluble metal compounds during hot work processes. J. Occup. Environ. Hyg. 16(6):378–386 (2019).
  • Guha, N., D. Loomis, K.Z. Guyton, et al.: Carcinogenicity of welding, molybdenum trioxide, and indium tin oxide. Lancet Oncol. 18(5):581–582 (2017). Available at http://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(17)30255-3/fulltext (accessed May 2, 2019).
  • Cena, L.G., M.J. Keane, W.P. Chisholm, S. Stone, M. Harper, and B.T. Chen: A novel method for assessing respiratory deposition of welding fume nanoparticles. J. Occup. Environ. Hyg. 11(12):771–780 (2014).
  • Zeidler-Erdely, P.C., A. Erdely, and J. M. Antonini: Immunotoxicology of arc welding fume: Worker and experimental animal studies. J. Immunotoxicol. 9(4):411–425 (2012).
  • Zeidler-Erdely, P.C., L.M. Falcone, and J.M. Antonini: Influence of welding fume metal composition on lung toxicity and tumor formation in experimental animal models. J.Occup. Environ. Hyg. 16(6):372–377 (2019).
  • De Matteis, S., D. Heederik, A. Burdorf, et al.: Current and new challenges in occupational lung diseases. Eur. Respir. Rev. 26(146):170080 (2017).
  • Harris, M.: Welding fume is a group 1 carcinogen with no OEL and no method – Suggestions for a path forward. J. Occup. Environ. Hyg. 16(6):367–371 (2019).
  • Stanislawska, M., T. Halatek, M. Cieslak, et al.: Coarse, fine and ultrafine particles arising during welding – Analysis of occupational exposure. Microchem. J. 135:1–9 (2017).
  • Vishnyakov, V.I., S.A. Kiro, M.V. Oprya, and A.A. Ennan: Effects of shielding gas temperature and flow rate on the welding fume particle size distribution. J. Aerosol. Sci. 114:55–61 (2017).
  • Meeker, J.D., P. Susi, and M.R. Flynn: Manganese and welding fume exposure and control in construction. J. Occup. Environ. Hyg. 4:943–951 (2007).
  • Wang, J., T. Hoang, E.L. Floyd, and J.L. Regens: Characterization of particulate fume and oxides emission from stainless steel plasma cutting. Ann. Work Expo. Health 61(3):311–320 (2017).
  • Antonini, J.M.: Health effects of welding. Crit. Rev. Toxicol. 33(1):61–103 (2003).
  • Plog, B.A.: Overview of industrial hygiene. In Fundamentals of Industrial Hygiene, B. A. Plog and P. J. Quinlan (eds.). United States of America: National Safety Council, 2002. pp. 3–32.
  • Pickford, G., and B. Davies: Aerosols. In Principles of Occupational Health & Hygiene: An Introduction, C. Tillman (ed.). Singapore: ANL Printers, 2007. pp. 125–171.
  • Iavicoli, I., V. Leso, L. Fontana, D. Cottica, and A. Bergamaschi: Characterization of inhalable, thoracic, and respirable fractions and ultrafine particle exposure during grinding, brazing, and welding activities in a mechanical engineering factory. J. Occup. Environ. Med. 55(4):430–445 (2013).
  • Berlinger, B., N. Benker, S. Weinbruch, et al.: Physicochemical characterization of different welding aerosols. Anal. Bioanal. Chem. 399:1773–1780 (2011).
  • Hanley, K.W., R. Andrews, S. Bertke, and K. Ashley: Manganese fractionation using a sequential extraction method to evaluate welders’ shielded metal arc welding exposure during construction projects in oil refineries. J. Occup. Environ. Hyg. 12:774–784 (2015).
  • Lehnert, M., B. Pesch, A. Lotz, et al.: Exposure to inhalable, respirable, and ultrafine particles in welding fume. Ann. Occup. Hyg. 56(5):557–567 (2012).
  • Hartmann, L., M. Bauer, J. Bertram, et al.: Assessment of the biological effects of welding fumes emitted from metal inert gas welding processes of aluminium and zinc-plated materials in humans. Int. J. Hyg. Environ. Health 217(2-3):160–168 (2014).
  • Persoons, R., D. Arnoux, T. Monssu, et al.: Determinants of occupational exposure to metals by gas metal arc welding and risk management measures: A biomonitoring study. Toxicol. Lett. 231(2):135–141 (2014).
  • Sriram, K., G.X. Lin, A.M. Jefferson, et al.: Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes. Toxicology 328:168–178 (2015).
  • Moroni, B., and C. Viti: Grain size, chemistry, and structure of fine and ultrafine particles in stainless steel welding fumes. Aerosol. Sci. 40(11):938–949 (2009).
  • Antonini, J.M., S. Stone, J.R. Roberts, et al.: Effect of short-term stainless steel welding fume inhalation exposure on lung inflammation, injury, and defense responses in rats. Toxicol. Appl. Pharmacol. 223:234–245 (2007).
  • Cena, L.G., W.P. Chisholm, M.J. Keane, and B.T. Chen: A field study on the respiratory deposition of the nano-sized fraction of mild and stainless steel welding fume metals. J. Occup. Environ. Hyg. 12:721–728 (2015).
  • Oprya, M., S. Kiro, A. Worobiec, et al.: Size distribution and chemical properties of welding fumes of inhalable particles. J. Aerosol. Sci. 45:50–57 (2012).
  • Ennan, A.A., S.A. Kiro, M.V. Oprya, and V.I. Vishnyakov: Particle size distribution of welding fume and its dependency on conditions of shielded metal arc welding. J. Aerosol. Sci. 64:103–110 (2013).
  • Cherrie, J.W., and R.J. Aitken: Measurement of human exposure to biologically relevant fractions of inhaled aerosols. Occup. Environ. Med. 56:747–752 (1999).
  • Notø, H.P., K.C. Nordby, and W. Eduard: Relationships between personal measurements of ‘total’ dust, respirable, thoracic, and inhalable aerosol fractions in the cement production industry. Ann. Occup. Hyg. 60(4):453–466 (2016).
  • International Organization for Standardization (ISO): Air Quality – Particle size fraction definitions for health-related sampling (ISO 7708). [Standard] Geneva, Switzerland: ISO, 1995.
  • Oberdörster, G., E. Oberdörster, and J. Oberdörster: Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113(7):823–839 (2005).
  • Oberdörster, G., A.B. Kane, R.D. Klaper, and R.H. Hurt: Nanotoxicology. In Casarett & Doull's Toxicology: The Basic Science of Poison, C.D. Klaassen (ed.). China: McGraw-Hill, 2013. pp. 1189–1229.
  • Brand, P., K. Lenz, U. Reisgen, and T. Kraus: Number size distribution of fine and ultrafine fume particles from various welding processes. Ann. Occup. Hyg. 57(3):305–313 (2013).
  • Bartley, D.L., and J.H. Vincent: Sampling conventions for estimating ultrafine and fine aerosol particle deposition in the human respiratory tract. Ann. Occup. Hyg. 55(7):696–709 (2011).
  • Cena, L.G., T.R, Anthony, and T.M. Peters: A personal nanoparticle respiratory deposition (NRD) sampler. Environ. Sci. Technol. 45(15):6483–6490 (2011).
  • Kang, G.S., P.A. Gillespie, A. Gunnison, A.L. Moreira, K.M. Tchou-Wong, and L.C. Chen: Long-term inhalation exposure to nickel nanoparticles exacerbated atherosclerosis in a susceptible mouse model. Environ. Health Perspect. 119(2):176–181 (2011).
  • Lehman-McKeeman, L.D.: Absorption, distribution and excretion of toxicants. In Casarett & Doull's Toxicology: The Basic Science of Poison, C.D. Klaassen (ed.). China: McGraw-Hill, 2013. pp. 153–183.
  • Nilsson, P.T., C. Isaxon, A.C. Eriksson, et al.: Nano-objects emitted during maintenance of common particle generators: Direct chemical characterization with aerosol mass spectrometry and implications for risk assessments. J. Nanopart. Res. 15:1–16 (2013).
  • Chang, C., P. Demokritou, M. Shafer, and D. Christiani: Physicochemical and toxicological characteristics of welding fume derived particles generated from real time welding processes. Environ. Sci. Process Impacts 15:214–224 (2013).
  • Tokar, E.J., W.A. Boyd, J.H. Freedman, and M.P. Waalkes: Toxic effects of metals. In Casarett & Doull's Toxicology: The Basic Science of Poison, C.D. Klaassen (ed.). China: McGraw-Hill, 2013. pp. 981–1030.
  • Pujalté, I., I. Passagne, B. Brouillaud, et al.: Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part. Fibre Toxicol. 8(10):1–16 (2011).
  • Sharma, H.S., S. Hussain, J. Schlager, S.F. Ali, and A. Sharma.: Influence of nanoparticles on blood-brain barrier permeability and brain edema formation in rats. In Brain Edema XIV, Z. Czernicki, A. Baethmann, U. Ito, Y. Katayama, T. Kuriwa, D. Mendelow (eds.). Germany: Springer Science and Business Media, 2010. pp. 359–364.
  • Sharma, H.S., and A. Sharma: Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology. Prog. Brain Res. 162:245–273 (2007).
  • Sivulka, D.J., B.R. Conard, G.W. Hall, and J.H. Vincent: Species-specific inhalable exposures in the nickel industry: A new approach for deriving inhalation occupational exposure limits. Regul. Toxicol. Pharmacol. 48:19–34 (2007).
  • Particle Technology Labs: “Particle size distribution analyses.” Available at https://www.particletechlabs.com/analytical-testing/particle-size-distribution-analyses (accessed May 17, 2019).
  • Jeong, J.Y., J.S. Park, and P.G. Kim: Characterization of total and size-fractionated manganese exposure by work area in a shipbuilding yard. Saf. Health Work 7:150–155 (2016).
  • Evans, D.E., B.K. Ku, M. Eileen, and K.H. Dunn: Aerosol monitoring during carbon nanofiber production: Mobile direct-reading sampling. Ann. Occup. Hyg. 54(5):514–531 (2010).
  • PennState Eberly College of Science: “The Latin Square Design.” Available at https://onlinecourses.science.psu.edu/stat503/node/21 (accessed May 17, 2019).
  • Health and Safety Executive (HSE): General methods for sampling and gravimetric analysis of respirable, thoracic and inhalable aerosols. In Methods for Determining Hazardous Substances (MDHS 14/4), United Kingdom: HSE, 2014. Available at http://www.hse.gov.uk/pubns/mdhs/pdfs/mdhs14-4.pdf (accessed May 16, 2019).
  • National Institute for Occupational Safety and Health (NIOSH): Method 0600: Particulates not otherwise regulated, respirable. In Manual of Analytical Methods, 4th ed. Cincinnati, Oh.: NIOSH, 1998. Available at https://www.cdc.gov/niosh/docs/2003-154/pdfs/0600.pdf (accessed May 16, 2019).
  • Stebounova L.V., N.I. Gonzalez-Pech, J.H. Park, T.R. Anthony, V.H. Grassian, and T.M. Peters: Particle concentrations in occupational settings measured with a nanoparticle respiratory deposition (NRD) sampler. Ann. Work Expo. Health 62(6):699–710 (2018).
  • Zefon International Inc.: “Zefon NRD Samplers Operating Instructions.” Zefon International Inc., Ocala, FL. Available at https://www.zefon.com/Content/Products/SamplingMedia/LA03061-NRD.pdf (accessed May 16, 2019).
  • National Institute for Occupational Safety and Health (NIOSH): Method 0500: Particulates not otherwise regulated, total. In Manual of Analytical Methods, 4th ed. Cincinnati, OH: NIOSH, 1994. Available at https://www.cdc.gov/niosh/docs/2003-154/pdfs/0500.pdf (accessed May 17, 2019).
  • Precisa Gravimetrics AG: “Precisa 360 EP Operating Instructions.” Precisa Gravimetrics AG, Dietikon, Switzerland. 2012. Available at https://www.precisa.com/images/downloads/Manual/en_360EP_Handbook.pdf (accessed May 17, 2019).
  • Occupational Safety and Health Administration (OSHA): ID-125G: Metal and Metalloid Particulates in Workplace Atmospheres (ICP Analysis). Salt Lake City, UT: OSHA, 2002. Available at https://www.osha.gov/dts/sltc/methods/inorganic/id125g/id125g.pdf (accessed June 7, 2019).
  • National Institute for Occupational Safety and Health (NIOSH): Method 7300: Elements by ICP. In Manual of Analytical Methods, 4th ed. Cincinnati, OH: NIOSH, 2003. Available at https://www.cdc.gov/niosh/docs/2003-154/pdfs/7300.pdf (accessed May 17, 2019).
  • Thermo Fisher Scientific Inc.: “Thermo Scientific™ Element 2™ High Resolution ICP-MS.” Thermo Fisher Scientific Inc., Waltham, MA. Available at https://www.thermofisher.com/order/catalog/product/IQLAAEGAAMFABWMAFC (accessed May 17, 2019).
  • Horiba Ltd.: “Dynamic Light Scattering Particle Size Distribution Analyzer LB-550.” Horiba Ltd., Kyoto, Japan. Available at http://www.horiba.com/fileadmin/uploads/Scientific/Documents/PSA/LB550_bro.pdf (accessed May 17, 2019).
  • Horiba Ltd.: “Dynamic Light Scattering Particle Size Analyzer LB-550.” Horiba Ltd., Kyoto, Japan. Available at http://www.horiba.com/fileadmin/uploads/Scientific/Documents/PSA/LB550_operation_man.pdf (accessed June 19, 2019).
  • Horiba Instruments Inc.: “A guidebook to particle size analysis.” Available at https://www.horiba.com/fileadmin/uploads/Scientific/eMag/PSA/Guidebook/pdf/PSA_Guidebook.pdf (accessed May 17, 2019).
  • Ganser, G.H., and P. Hewett: An accurate substitution method for analyzing censored data. J. Occup. Environ. Hyg. 7(4):233–244 (2010).
  • Shimadzu Corporation: “Particle size distribution dependent on principle of measurement.” Available at http://www.shimadzu.com/an/powder/support/practice/p01/lesson02.html (accessed May 17, 2019).
  • Elihn, K., and P. Berg: Ultrafine particle characteristics in seven industrial plants. Ann. Occup. Hyg. 53(5):475–484 (2009).
  • Lee, M., W.J. McClellan, J. Candela, D. Andrews, and P. Biswas: Reduction of nanoparticle exposure to welding aerosols by modification of the ventilation system in a workplace. J. Nanoparticle Res. 9:127–136 (2007).
  • Pandeh, M., S. Fathi, M.J.Z. Sakhvidi, J.Z. Reza, and L. Sedghian: Oxidative stress and early DNA damage in workers exposed to iron-rich metal fumes. Environ. Sci. Pollut. Res. 24(10):9645–9650 (2017).
  • Kornberg, T.G., T.A. Stueckle, J.M. Antonini, et al.: Potential toxicity and underlying mechanisms associated with pulmonary exposure to iron oxide nanoparticles: Conflicting literature and unclear risk. Nanomaterials 7(10):307 (2017).
  • International Agency for Research on Cancer: Arsenic, metals, fibres, and dusts. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 100C, World Health Organization (ed.). Lyon, France, 2012. pp. 1–511. Available at https://monographs.iarc.fr/wp-content/uploads/2018/06/mono100C.pdf (accessed May 17, 2019).
  • Canadian Centre of Occupational Health and Safety (CCOHS): “Synergism.” Available at https://www.ccohs.ca/oshanswers/chemicals/synergism.html (accessed May 17, 2019).
  • Watson, J.G., R.J. Tropp, S.D. Kohl, X. Wang, and J.C. Chow: Filter processing and gravimetric analysis for suspended particulate matter samples. Aerosol Sci. Eng. 1:93–105 (2017).
  • Breuer, D.: Analytical performance issues. J. Occup. Environ. Hyg. 9:D25–D32 (2012).
  • Soo, J., K. Monaghan, T. Lee, M. Kashon, and M. Harper: Air sampling filtration media: Collection efficiency for respirable size-selective sampling. Aerosol Sci. Technol. 50(1):76–87 (2016).
  • Gomes, J.F.P., P.C.S. Albuquerque, R.M.M. Miranda, and M.T.F. Vieira: Determination of airborne nanoparticles from welding operations. J. Toxicol. Environ. Health 75:747–755 (2012).
  • Schulte, P., C. Geraci, R. Zumwalde, M. Hoover, and E. Kuempel: Occupational risk management of engineered nanoparticles. J. Occup. Environ. Hyg. 5(4):239–249 (2008).
  • Rengasamy S., W.P. King, B.C. Eimer, and R.E. Shaffer: Filtering performance of NIOSH-approved N95 and P100 filtering facepiece respirators against 4 to 30 nanometer-size nanoparticles. J. Occup. Environ. Hyg. 5(9):556–564 (2008).
  • Shaffer R.E., and S. Rengasamy: Respiratory protection against airborne nanoparticles: A review. J. Nanopart. Res. 11:1661–1672 (2009).
  • Del Castillo, A.M.P: Nanomaterials: what are the issues for workers? In Small and smarter electronics, big impact: The importance of micro- and nanoelectronics in our digital economy and society, European Trade Union Institute. European Economic and Social Committee (EESC), Brussels, November 12, 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.