881
Views
20
CrossRef citations to date
0
Altmetric
Articles

Characterizing particle emissions from a direct energy deposition additive manufacturing process and associated occupational exposure to airborne particles

ORCID Icon, , &

References

  • Aizenberg V, Grinshpun Willeke SK, Smith J, Baron P. 2000. Performance characteristics of the button personal inhalable aerosol sampler. AIHAJ. 61(3):398–404. doi:10.1080/15298660008984550
  • Ashley K, Howe AM, Demange M, Nygren O. 2003. Sampling and analysis considerations for the determination of hexavalent chromium in workplace air. J Environ Monitor. 5(5):707–716. doi:10.1039/b306105c
  • Azimi P, Zhao D, Pouzet C, Crain NE, Stephens B. 2016. Emissions of ultrafine particles and volatile organic compounds from commercially available desktop three-dimensional printers with multiple filaments. Environ Sci Technol. 50(3):1260–1268. doi:10.1021/acs.est.5b04983
  • Bau S, Payet R, Witschger O, Jankowska E. 2017b. Performance study of portable devices for the real-time measurement of airborne particle number concentration and size (distribution). J Phys. 838:012001. doi:10.1088/1742-6596/838/1/012001
  • Bau S, Toussaint A, Payet R, Witschger O. 2017a. Performance study of various Condensation Particle Counters (CPCs): development of a methodology based on steady-state airborne DEHS particles and application to a series of handheld and stationary CPCs. J Phys. 838(1):012002. doi:10.1088/1742-6596/838/1/012002
  • Bau S, Witschger O. 2013. A modular tool for analyzing cascade impactors data to improve exposure assessment to airborne nanomaterials. J Phys. 429:012002. doi:10.1088/1742-6596/429/1/012002
  • Bau S, Zimmermann B, Payet R, Witschger O. 2015. Laboratory study of the performance of the miniature Diffusion Size Classifier (DiSCmini) for various aerosols in the 15–400 nm range. Environ Sci: Process. Impact. 17:261–269. doi:10.1039/C4EM00491D
  • Boisselier D, Sankaré S. 2012. Influence of powder characteristics in laser direct metal deposition of SS316L for metallic parts manufacturing. Phys Proc. 39:455–463. doi:10.1016/j.phpro.2012.10.061
  • Brockmann JE. 2011. Aerosol transport in sampling lines and inlets In: Kulkarni P, Baron PA, Willeke K, eds. Aerosol measurement: principles, techniques and applications. New Jersey: John Wiley & Sons Inc; p. 69–105.
  • Broday DM, Rosenzweig R. 2011. Deposition of fractal-like soot aggregates in the human respiratory tract. J Aerosol Sci. 42(6):372–286. doi:10.1016/j.jaerosci.2011.03.001
  • CEN. 2018. Workplace exposure: assessment of inhalation exposure to nano-objects and their agglomerates and aggregates. CEN: EN 17058.
  • Cena LG, Chisholm WP, Keane MJ, Cumpston A, Chen BT. 2014. Size distribution and estimated respiratory deposition of total chromium, hexavalent chromium, manganese, and nickel in gas metal arc welding fume aerosols. Aerosol Sci Technol. 48(12):1254–1263. doi:10.1080/02786826.2014.980883
  • Cena LG, Keane MJ, Chisholm WP, Stone S, Harper M, Chen BT. 2014. A novel method for assessing respiratory deposition of welding fume nanoparticles. J Occup Environ Hyg. 11(12):771–780. doi:10.1080/15459624.2014.919393
  • Dong Y, Hays MD, Smith ND, Kinsey JS. 2004. Inverting cascade impactor data for size-resolved characterization of fine particulate source emissions. J Aerosol Sci. 35(12):1497–1512. doi:10.1016/j.jaerosci.2004.07.002
  • Du Preez S, Johnson A, LeBouf RF, Linde SJL, Stefaniak AB, Du Plessis J. 2018. Exposures during industrial 3-D printing and post-processing tasks. Rapid Prototyp J. 24(5):865–871. doi:10.1108/RPJ-03-2017-0050
  • European Union. 2008. European Union: Regulation (EC) No 1272/2008 of the European and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006.
  • Evans DE, Ku BK, Birch ME, Dunn KH. 2010. Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling. Ann Work Exposures Health. 54(5):514–531. doi:10.1093/annhyg/meq015
  • Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CCL, Shin YC, Zhang S, Zavattieri PD. 2015. The status, challenges, and future of additive manufacturing in engineering. Comput-Aided Des. 69:65–89. doi:10.1016/j.cad.2015.04.001
  • GESTIS. 2019. International limit values. https://limitvalue.ifa.dguv.de/.
  • Gordon SC, Butala JH, Carter JM, Elder A, Gordon T, Gray G, Sayre PG, Schulte PA, Tsai CS, West J. 2014. Workshop report: strategies for setting occupational exposure limits for engineered nanomaterials. Regul Toxicol Pharm. 68(3):305–311. doi:10.1016/j.yrtph.2014.01.005
  • Görner P, Simon X, Wrobel R, Kauffer E, Witschger O. 2010. Laboratory study of selected personal inhalable aerosol samplers. Ann Work Exposures Health. 54(2):165–187. doi:10.1093/annhyg/mep079
  • IARC. 2012. Arsenic, metals, fibres, and dusts: volume 100C – A review of human carcinogens. IARC Monographs o the evaluation of carcinogenic risks to humans. Geneva: WHO; 501 p.
  • ICRP. 1994. Publication 66: Human respiratory tract model for radiological protection. Oxford: Pergamon.
  • ISO. 2004. ISO: 15202-3: Workplace air: determination of metals and metalloids in airborne particulate matter by inductively coupled plasma atomic emission spectrometry – Part 3: analysis.
  • ISO. 2008. ISO: Nanotechnologies – health and safety practices in occupational settings relevant to nanotechnologies.
  • ISO. 2009. ISO: 15767: Workplace atmospheres – controlling and characterizing uncertainty in weighing collected aerosols.
  • ISO. 2010. ISO: 30011: Workplace air – determination of metals and metalloids in airborne particulate matter by inductively coupled plasma mass spectrometry.
  • ISO. 2012. ISO: 15202-2: Workplace air – determination of metals and metalloids in airborne particulate matter by inductively coupled plasma atomic emission spectrometry – Part 2: sample preparation.
  • Jenkins NT. 1997. Chemistry of airborne particles for metallurgical processing. In: Materials science and engineering. Cambridge, MA: Massachusetts Institute of Technology; p. 189.
  • Keane M, Stone S, Chen B, Slaven J, Schwegler-Berry D, Antonini J. 2009. Hexavalent chromium content in stainless steel welding fumes is dependent on the welding process and shield gas type. J Environ Monit. 11(2):418–424. doi:10.1039/B814063D
  • Kellens K, Baumers M, Gutowski TG, Flanagan W, Lifset R, Duflou JR. 2017. Environmental dimensions of additive manufacturing: mapping application domains and their environmental implications. J Ind Ecol. 21(S1):S49–S68. doi:10.1111/jiec.12629
  • Kenny L, Aitken R, Chalmers C, Fabries J, Gonzalezfernandez E, Kromhout H, Liden G, Mark D, Riediger G, Prodi V. 1997. A collaborative European study of personal inhalable aerosol sampler performance. Ann Occup Hyg. 41(2):135–153. doi:10.1016/S0003-4878(96)00034-8
  • Kolb T, Schmidt P, Beisser R, Tremel J, Schmidt M. 2017. Safety in additive manufacturing: fine dust measurements for a process chain in Laser beam melting of metals. RTeJ Fachforum Für Rapid Technol. 2017(1):4626.
  • Lee T, Kim SW, Chisholm WP, Slaven J, Harper M. 2010. Performance of high flow rate samplers for respirable particle collection. Ann Work Exposures Health. 54(6):697–709. doi:10.1093/annhyg/meq050
  • Li S-N, Lundgren DA, Rovell-Rixx D. 2000. Evaluation of six inhalable aerosol samplers. AIHAJ. 61(4):506–516. doi:10.1080/15298660008984562
  • Markowski GR. 1987. Improving Twomey’s algorithm for inversion of aerosol measurement data. Aerosol Sci Technol. 7(2):127–141. doi:10.1080/02786828708959153
  • Mellin P, Jönsson C, Åkermo M, Fernberg P, Nordenberg E, Brodin H, Strondl A. 2016. Nano-sized by-products from metal 3D printing, composite manufacturing and fabric production. J Cleaner Prod. 139:1224–1233. doi:10.1016/j.jclepro.2016.08.141
  • Mendes L, Kangas A, Kukko K, Mølgaard B, Säämänen A, Kanerva T, Flores Ituarte I, Huhtiniemi M, Stockmann-Juvala H, Partanen J, et al. 2017. Characterization of emissions from a desktop 3D printer. J Ind Ecol. 21(S1):S94–S106. doi:10.1111/jiec.12569
  • MétroPol. 2017. Method M-43 (hexavalent chromium - CrVI). MétroPol database version 01.01. http://www.inrs.fr/publications/bdd/metropol.html.
  • O’Shaughnessy PT. 2013. Occupational health risk to nanoparticulate exposure. Environ. Sci.: Processes Impacts 15:49–62.
  • Ouf F, Yon J, Ausset P, Coppalle A, Maillé M. 2010. Influence of sampling and storage protocol on fractal morphology of soot studied by transmission electron microscopy. Aerosol Sci Technol. 44(11):1005–1017. doi:10.1080/02786826.2010.507228
  • Pfefferkorn FE, Bello D, Haddad G, Park J-Y, Powell M, Mccarthy J, Bunker KL, Fehrenbacher A, Jeon Y, Virji MA, et al. 2010. Characterization of exposures to airborne nanoscale particles during friction stir welding of aluminum. Ann Work Exposures Health. 54(5):486–503. doi:10.1093/annhyg/meq037
  • Proctor DM, Suh M, Mittal L, Hirsch S, Valdes Salgado R, Bartlett C, Van Landingham C, Rohr A, Crump K. 2016. Inhalation cancer risk assessment of hexavalent chromium based on updated mortality for Painesville chromate production workers. J Expo Sci Environ Epidemiol. 26(2):224. doi:10.1038/jes.2015.77
  • R’mili B, Le Bihan OL, Dutouquet C, Aguerre-Charriol O, Frejafon E. 2013. Particle sampling by TEM grid filtration. Aerosol Sci Technol. 47(7):767–775. doi:10.1080/02786826.2013.789478
  • Roth GA, Geraci CL, Stefaniak A, Murashov V, Howard J. 2019. Potential occupational hazards of additive manufacturing. J Occup Environ Hyg. 16(5):321–328. doi:10.1080/15459624.2019.1591627
  • Shepard MN, Brenner S. 2013. An occupational exposure assessment for engineered nanoparticles used in semiconductor fabrication. Ann Occup Hyg. 58(2):251–265. doi:10.1093/annhyg/met064
  • Twomey S. 1975. Comparison of constrained linear inversion and an iterative nonlinear algorithm applied to the indirect estimation of particle size distributions. Comput Phys. 18(2):188–200. doi:10.1016/0021-9991(75)90028-5
  • Vincent R, Gillet M, Goutet P, Guichard C, Hédouin-Langlet C, Frocaut AM, Lambert P, Leray F, Mardelle P, Dorotte M, et al. 2014. Occupational exposure to chrome VI compounds in French companies: results of a national campaign to measure exposure (2010–2013). Ann Occup Hyg. 59(1):41–51. doi:10.1093/annhyg/meu084
  • Virtanen A, Kannosto J, Kuuluvainen H, Arffman A, Joutsensaari J, Saukko E, Hao L, Yli-Pirilä P, Tiitta P, Holopainen JK, et al. 2011. Bounce behavior of freshly nucleated biogenic secondary organic aerosol particles. Atmos Chem Phys. 11(16):8759–8766.: doi:10.5194/acp-11-8759-2011
  • Wang J, Asbach C, Fissan H, Hülser T, Kuhlbusch TAJ, Thompson D, Pui DYH. 2011. How can nanobiotechnology oversight science and industry: examples from environmental, health, and safety studies of nanoparticles (nano-EHS). J Nanopart Res. 13(4):1373–1387. doi:10.1007/s11051-011-0236-z
  • Winklmayr W, Wang H-C, John W. 1990. Adaptation of the Twomey algorithm to the inversion of cascade impactor data. Aerosol Sci Technol. 13(3):322–331. doi:10.1080/02786829008959448
  • Witschger O, Bihan OL, Reynier M, Durand C, Marchetto A, Zimmermann E. 2012. Préconisations en matière de caractérisation des potentiels d'émission et d'exposition professionnelle aux aérosols lors d'opérations mettant en oeuvre des nanomatériaux. Hygiène et Sécurité du Travail. 226:41–55.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.