436
Views
1
CrossRef citations to date
0
Altmetric
Articles

Laboratory evaluation of a personal aethalometer for assessing airborne carbon nanotube exposures

, , &

References

  • Aethlabs. 2015. microAeth® model AE51 operating manual. San Francisco (CA): Aethlabs. https://aethlabs.com.
  • Ahmed T , Dutkiewicz VA , Shareef A , Tuncel G , Tuncel S , Husain L . 2009. Measurement of black carbon (BC) by an optical method and a thermal-optical method: intercomparison for four sites. Atmosph Environ. 43(40):6305–6311. doi:10.1016/j.atmosenv.2009.09.031
  • Aiso S , Yamazaki K , Umeda Y , Asakura M , Kasai T , Takaya M , Toya T , Koda S , Nagano K , Arito H, et al. 2010. Pulmonary toxicity of intratracheal instilled multiwall carbon nanotubes in male Fischer 344 rats. Ind Health. 48(6):783–795.
  • Dahm MM , Evans DE , Schubauer-Berigan MK , Birch ME , Fernback JE . 2012. Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers. Ann Occup Hyg. 56(5):542–556. doi:10.1093/annhyg/mer110
  • Dahm MM , Schubauer-Berigan MK , Evans DE , Birch ME , Fernback JE , Deddens JA . 2015. Carbon nanotube and nanofiber exposure assessments: an analysis of 14 site visits. Ann Occup Hyg. 59(6):705–723. doi:10.1093/annhyg/mev020
  • EPA . 2012. Report to Congress on Black Carbon. Publication No. EP A-450/R-12-001. In: Agency EP , editor. Washington, D.C.
  • Good N , Mölter A , Peel JL , Volckens J . 2017. An accurate filter loading correction is essential for assessing personal exposure to black carbon using an aethalometer. J Expos Sci Environ Epidemiol. 27(4):409–416. doi:10.1038/jes.2016.71
  • Han JH , Lee EJ , Lee JH , So KP , Lee YH , Bae GN , Lee SB , Ji JH , Cho MH , Yu IJ . 2008. Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhal Toxicol. 20(8):741–749. doi:10.1080/08958370801942238
  • Hansen ADA , Rosen H , Novakov T . 1984. The aethalometer—an instrument for the real-time measurement of optical absorption by aerosol particles. Sci Total Environ. 36:191–196. doi:10.1016/0048-9697(84)90265-1
  • Hashimoto N , Ogura I , Kotake M , Kishimoto A , Honda K . 2013. Evaluating the capabilities of portable black carbon monitors and photometers for measuring airborne carbon nanotubes. J Nanopart Res. 15(11):2033. doi:10.1007/s11051-013-2033-3
  • Jeong C-H , Hopke PK , Kim E , Lee D-W . 2004. The comparison between thermal-optical transmittance elemental carbon and aethalometer black carbon measured at multiple monitoring sites. Atmosph Environ. 38(31):5193–5204. doi:10.1016/j.atmosenv.2004.02.065
  • Jimenez J , Claiborn C , Larson T , Gould T , Kirchstetter TW , Gundel L . 2007. Loading effect correction for real-time aethalometer measurements of fresh diesel soot. J Air Waste Manage Assoc. 57(7):868–873. doi:10.3155/1047-3289.57.7.868
  • Kim JB , Kim KH , Yun S-T , Bae G-N . 2016. Detection of carbonaceous aerosols released in CNT workplaces using an aethalometer. Ann Occup Hyg. 60(6):717–730. doi:10.1093/annhyg/mew025
  • Kim W-G , Yong S-D , Yook S-J , Ji JH , Kim K-H , Bae G-N , Chung E-K , Kim JH . 2017. Comparison of black carbon concentration and particle mass concentration with elemental carbon concentration for multi-walled carbon nanotube emission assessment purpose. Carbon. 122:228–236. doi:10.1016/j.carbon.2017.06.050
  • Kirchstetter TW , Novakov T . 2007. Controlled generation of black carbon particles from a diffusion flame and applications in evaluating black carbon measurement methods. Atmosph Environ 41(9):1874–1888. doi:10.1016/j.atmosenv.2006.10.067
  • Lee JH , Lee S-B , Bae GN , Jeon KS , Yoon JU , Ji JH , Sung JH , Lee BG , Lee JH , Yang JS, et al. 2010. Exposure assessment of carbon nanotube manufacturing workplaces. Inhal Toxicol. 22(5):369–381. doi:10.3109/08958370903367359
  • Lu W , Zu M , Byun JH , Kim BS , Chou TW . 2012. State of the art of carbon nanotube fibers: opportunities and challenges. Adv Mater. 24(14):1805–1833. doi:10.1002/adma.201104672
  • Methner M , Beaucham C , Crawford C , Hodson L , Geraci C . 2012. Field application of the Nanoparticle Emission Assessment Technique (NEAT): task-based air monitoring during the processing of engineered nanomaterials (ENM) at four facilities. J Occup Environ Hyg. 9(9):543–555. doi:10.1080/15459624.2012.699388
  • Milne WI , Mann M , Dijon J , Bachmann P , McLaughlin J , Robertson J , Teo KBK , Lewalter A , de Souza M , Boggild P . 2008. Carbon nanotubes. E-nano Newslett. 13:5–32.
  • Morimoto Y , Horie M , Kobayashi N , Shinohara N , Shimada M . 2012. Inhalation toxicity assessment of carbon-based nanoparticles. Acc Chem Res. 46(3):770–781. doi:10.1021/ar200311b
  • Nagai H , Okazaki Y , Chew SH , Misawa N , Yamashita Y , Akatsuka S , Ishihara T , Yamashita K , Yoshikawa Y , Yasui H . 2011. Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proceedings of the National Academy of Sciences. 108(49):E1330–E1338. doi:10.1073/pnas.1110013108
  • Nakanishi J , Morimoto Y , Ogura I , Kobayashi N , Naya M , Ema M , Endoh S , Shimada M , Ogami A , Myojyo T et al. 2015. Risk assessment of the carbon nanotube group. Risk Anal. 35(10):1940–1956. doi:10.1111/risa.12394
  • NIOSH . 2003. NIOSH Manual of Analytical Methods. NIOSH Publication No. 2003-154. In: Health NIfOSa , editor. Washington D.C.: U.S. Government Printing Office.
  • NIOSH . 2009. Approaches to Safe Nanotechnology: Managing the Health and Safety Concerns Associated with Engineered Nanomaterials. NIOSH Publication No. 2009-125. In: Health NIfOSa , editor. Washington, D.C.: U.S. Government Printing Office.
  • NIOSH . 2013. Current Intelligence 65: Occupational exposure to carbon nanotubes and nanofibers. NIOSH Publication No. 2013-145. In: Health NIfOSa , editor. Washington, D.C.: U.S. Government Printing Office.
  • O’Shaughnessy PT , Achutan C , O’Neill ME , Thorne PS . 2003. A small whole-body exposure chamber for laboratory use. Inhal Toxicol. 15:252–263.
  • O’Shaughnessy PT , Adamcakova-Dodd A , Altmaier R , Thorne PS . 2014. Assessment of the aerosol generation and toxicity of carbon nanotubes. Nanomaterials. 4(2):439–453. doi:10.3390/nano4020439
  • O’Shaughnessy P , Cavanaugh JE . 2015. Performing t-tests to compare autocorrelated time series data collected from direct-reading instruments. J Occup Environ Hyg. 12(11):743–752. doi:10.1080/15459624.2015.1044603
  • Petzold A , Kopp C , Niessner R . 1997. The dependence of the specific attenuation cross-section on black carbon mass fraction and particle size. Atmosph Environ. 31(5):661–672. doi:10.1016/S1352-2310(96)00245-2
  • Shvedova AA , Pietroiusti A , Fadeel B , Kagan VE . 2012. Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicol Appl Pharmacol. 261(2):121–133. doi:10.1016/j.taap.2012.03.023
  • Stapleton EM , O’Shaughnessy PT , Locke SJ , Altmaier RW , Hofmann JN , Beane Freeman LE , Thorne PS , Jones RR , Friesen MC . 2018. A task-based analysis of black carbon exposure in Iowa farmers during harvest. J Occup Environ Hyg. 15(4):293–304. doi:10.1080/15459624.2017.1422870
  • Thorne PS . 1994. Experimental grain dust atmospheres generated by wet and dry aerosolization techniques. Am J Industr Med. 25(1):109–112. doi:10.1002/ajim.4700250129
  • Vilcassim MJR , Thurston GD , Peltier RE , Gordon T . 2014. Black carbon and particulate matter (PM2. 5) concentrations in New York City’s subway stations. Environ Sci Technol. 48(24):14738–14745. doi:10.1021/es504295h
  • Virkkula A , Mäkelä T , Hillamo R , Yli-Tuomi T , Hirsikko A , Hämeri K , Koponen IK . 2007. A simple procedure for correcting loading effects of aethalometer data. J Air Waste Manage Assoc. 57(10):1214–1222. doi:10.3155/1047-3289.57.10.1214
  • Weingartner E , Saathoff H , Schnaiter M , Streit N , Bitnar B , Baltensperger U . 2003. Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. J Aero Sci. 34(10):1445–1463. doi:10.1016/S0021-8502(03)00359-8
  • Xu J , Futakuchi M , Shimizu H , Alexander DB , Yanagihara K , Fukamachi K , Suzui M , Kanno J , Hirose A , Ogata A . 2012. Multi‐walled carbon nanotubes translocate into the pleural cavity and induce visceral mesothelial proliferation in rats. Cancer Sci. 103(12):2045–2050. doi:10.1111/cas.12005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.