608
Views
5
CrossRef citations to date
0
Altmetric
Articles

Evaluation and updates to the Leggett model for pharmacokinetic modeling of exposure to lead in the workplace – Part I adjustments to the adult systemic model

&

References

  • Alarcon W . 2016. Elevated blood lead levels among employed adults - United States, 1994-2013. MMWR Morb Mortal Wkly Rep. 63(55):59–65. doi:10.15585/mmwr.mm6355a5
  • Ashford NA , Grecht RD , Hattis DB , Katz JI . 1977. The effects of OSHA medical removal protection on labor costs of selected lead industries. Massachusetts Institute of Technology, 77 Massachusetts Avenue, E38-254, Cambridge, Massachusetts 02139: Center for Policy Alternatives.
  • Bergdahl IA , Sheveleva M , Schutz A , Artamonova VG , Skerfving S . 1998. Plasma and blood lead in humans: capacity-limited binding to delta-aminolevulinic acid dehydratase and other lead-binding components. Toxicol Sci. 46(2):247–253. doi:10.1006/toxs.1998.2535
  • Bernard SR . 1977. Dosimetric data and metabolic model for lead. Health Phys. 32(1):44–46.
  • Bert JL , van Dusen LJ , Grace JR . 1989. A generalized model for the prediction of lead body burdens. Environ Res. 48(1):117–127. doi:10.1016/s0013-9351(89)80090-8
  • Carlisle JC , Dowling KC , Siegel DM , Alexeeff GV . 2009. A blood lead benchmark for assessing risks from childhood lead exposure. J Environ Sci Health A Tox Hazard Subst Environ Eng. 44(12):1200–1208. doi:10.1080/10934520903139829
  • Coon S , Stark A , Peterson E , Gloi A , Kortsha G , Pounds J , Chettle D , Gorell J . 2006. Whole-body lifetime occupational lead exposure and risk of Parkinson's disease. Environ Health Perspect. 114(12):1872–1876. doi:10.1289/ehp.9102
  • Coyle P , Kosnett MJ , Hipkins K . 2005. Severe lead poisoning in the plastics industry: a report of three cases. Am J Ind Med. 47(2):172–175. doi:10.1002/ajim.20123
  • deSilva PE . 1981. Determination of lead in plasma and studies on its relationship to lead in erythrocytes. Br J Ind Med. 38(3):209–217. doi:10.1136/oem.38.3.209
  • Fleming DE , Boulay D , Richard NS , Robin JP , Gordon CL , Webber CE , Chettle DR . 1997. Accumulated body burden and endogenous release of lead in employees of a lead smelter. Environ Health Perspect. 105(2):224–233. doi:10.1289/ehp.97105224
  • Fleming DE , Chettle DR , Webber CE , O'Flaherty EJ . 1999. The O'Flaherty model of lead kinetics: an evaluation using data from a lead smelter population. Toxicol Appl Pharmacol. 161(1):100–109. doi:10.1006/taap.1999.8790
  • Froines JR , Liu WC , Hinds WC , Wegman DH . 1986. Effect of aerosol size on the blood lead distribution of industrial workers. Am J Ind Med. 9(3):227–237. doi:10.1002/ajim.4700090305
  • Froines JR , Liu WV , Wegman DH , Hinds WC . 1995. Prediction of blood lead levels in occupationally exposed workers using toxicokinetic modelling and empirically-derived size distribution data: regulatory implications. Occup. Hyg. 1:279–292.
  • Griffin S , Marcus A , Schulz T , Walker S . 1999. Calculating the interindividual geometric standard deviation for use in the integrated exposure uptake biokinetic model for lead in children. Environ Health Perspect. 107(6):481–487. doi:10.1289/ehp.99107481
  • Hattis D . 1981. Dynamics of medical removal protection for lead - a reappraisal. Cambridge (MA): Center for Policy Alternatives, Massachusetts Institute of Technology CPA-81-25.
  • Henn SA , Sussell AL , Li J , Shire JD , Alarcon WA , Tak S . 2011. Characterization of lead in US workplaces using data from OSHA's integrated management information system. Am J Ind Med. 54(5):356–365. doi:10.1002/ajim.20926
  • Hirata M , Yoshida T , Miyajima K , Kosaka H , Tabuchi T . 1995. Correlation between lead in plasma and other indicators of lead exposure among lead-exposed workers. Int Arch Occup Environ Health. 68(1):58–63. doi:10.1007/bf01831634
  • Koh DH , Locke SJ , Chen YC , Purdue MP , Friesen MC . 2015. Lead exposure in US worksites: a literature review and development of an occupational lead exposure database from the published literature. Am J Ind Med. 58(6):605–616. doi:10.1002/ajim.22448
  • Kosnett MJ , Wedeen RP , Rothenberg SJ , Hipkins KL , Materna BL , Schwartz BS , Hu H , Woolf A . 2007. Recommendations for medical management of adult lead exposure. Environ Health Perspect. 115(3):463–471. doi:10.1289/ehp.9784
  • Laidlaw MA , Filippelli G , Mielke H , Gulson B , Ball AS . 2017. Lead exposure at firing ranges - a review. Environ Health. 16(1):34. doi:10.1186/s12940-017-0246-0
  • Lead exposure in construction: interim final rule, 29 C.F.R., 1926. 62 (1993)
  • Leggett RW . 1993. An age-specific kinetic model of lead metabolism in humans. Environ Health Perspect. 101(7):598–616. doi:10.1289/ehp.93101598
  • Leggett RW . 2001. Reliability of the ICRP's dose coefficients for members of the public. 1. Sources of uncertainty in the biokinetic models. Radiat Prot Dosimetry. 95(3):199–213. doi:10.1093/oxfordjournals.rpd.a006543
  • Maddaloni M , Ballew M , Diamond G , Follansbee M , Gefell D , Goodrum P , Johnson M , Koporec K , Khoury G , Luey J , et al. 2005. Assessing lead risks at non-residential hazardous waste sites. HERA. 11:967–1003. doi:10.1080/10807030500257838
  • Manton WI , Cook JD . 1984. High accuracy (stable isotope dilution) measurements of lead in serum and cerebrospinal fluid. Br J Ind Med. 41(3):313–319. doi:10.1136/oem.41.3.313
  • Marcus AH . 1985. Multicompartment kinetic model for lead. III. Lead in blood plasma and erythrocytes. Environ Res. 36(2):473–489. doi:10.1016/0013-9351(85)90039-8
  • MathWorks. 2018. Evaluating goodness of fit – MATLAB & Simulink; [accessed 2020 Feb 10]. https://www.mathworks.com/help/curvefit/evaluating-goodness-of-fit.html
  • MIOSHA. 2018. December 11, 2018 revisions to the MIOSHA lead standards. Michigan Occupational Safety and Health Administration, Department of Licensing and Regulatory Affairs; [accessed 2019 Jan 22]. https://www.michigan.gov/lara/0,4601,7-154-89334_11407_15368-486100–,00.html.
  • Mushak P . 1991. Gastro-intestinal absorption of lead in children and adults: overview of biological and biophysico-chemical aspects. Chem. Spec. Bioavail. 3(3-4):87–104. doi:10.1080/09542299.1991.11083160
  • Nie H , Chettle DR , Webber CE , Brito JAA , O'Meara JM , McNeill FE . 2005. The study of age influence on human bone lead metabolism by using a simplified model and X-ray fluorescence data. J Environ Monit. 7(11):1069–1073. doi:10.1039/b507749d
  • NIOSH. 2018a. Adult blood lead epidemiology and surveillance. Centers for Disease Control and Prevention National Institute of Occupational Safety and Health; [accessed 2019 Jan 19]. https://www.cdc.gov/niosh/topics/ables/description.html.
  • NIOSH . 2018b. Request for information about inorganic lead (CAS no. 7439-92-1). Fed Regist. 83:42303–42304. https://www.govinfo.gov/content/pkg/FR-2018-08-21/pdf/2018-18019.pdf.
  • O’Flaherty EJ . 1992. Modeling bone mineral metabolism, with special reference to calcium and lead. Neurotoxicology. 13:789–797.
  • O’Flaherty EJ . 1993. Physiologically based models for bone-seeking elements. IV. Kinetics of lead disposition in humans. Toxicol. Appl. Pharmacol. 118:16–29. doi:10.1006/taap.1993.1004.
  • O’Flaherty EJ . 1995. PBK modeling for metals. Examples with lead, uranium, and chromium. Toxicol Lett. 82-83:367–372. doi:10.1016/0378-4274.
  • O’Flaherty EJ . 2000. Modeling normal aging bone loss, with consideration of bone loss in osteoporosis. Toxicol. Sci. 55:171–188. doi:10.1093/toxsci/55.1.171.
  • OEHHA. 2013. Estimating workplace air and worker blood lead concentration using an updated physiologically-based pharmacokinetic (PBPK) model: Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency. https://oehha.ca.gov/air/document/estimating-workplace-air-and-worker-blood-lead-concentration-using-updated-pbpk-model.
  • O'Flaherty EJ , Inskip MJ , Franklin CA , Durbin PW , Manton WI , Baccanale CL . 1998. Evaluation and modification of a physiologically based model of lead kinetics using data from a sequential isotope study in cynomolgus monkeys. Toxicol Appl Pharmacol. 149(1):1–16. doi:10.1006/taap.1997.8328
  • O'Flaherty EJ , Inskip MJ , Yagminas AP , Franklin CA . 1996. Plasma and blood lead concentrations, lead absorption, and lead excretion in nonhuman primates. Toxicol Appl Pharmacol. 138(1):121–130. doi:10.1006/taap.1996.0105
  • OSHA . 1978. Occupational exposure to lead: attachments to the preamble for the final standard. Fed Regist. 43:54353–54509. https://www.osha.gov/FedReg_osha_pdf/FED19781121.pdf.
  • Petito Boyce C , Sax SN , Cohen JM . 2017. Particle size distributions of lead measured in battery manufacturing and secondary smelter facilities and implications in setting workplace lead exposure limits. J Occup Environ Hyg. 14(8):594–608. doi:10.1080/15459624.2017.1309046
  • Pounds JG , Leggett RW . 1998. The ICRP age-specific biokinetic model for lead: validations, empirical comparisons, and explorations. Environ Health Perspect. 106 Suppl 6:1505–1511. doi:10.1289/ehp.98106s61505
  • Schutz A , Bergdahl IA , Ekholm A , Skerfving S . 1996. Measurement by ICP-MS of lead in plasma and whole blood of lead workers and controls. Occup Environ Med. 53(11):736–740. doi:10.1136/oem.53.11.736
  • Shaffer RM , Gilbert SG . 2018. Reducing occupational lead exposures: strengthened standards for a healthy workforce. NeuroToxicology. 69:181–186. doi:10.1016/j.neuro.2017.10.009
  • Sweeney LM . 2015. Evaluation of pharmacokinetic models for the disposition of lead (Pb) in humans, in support of application to occupational exposure limit derivation. Dayton (OH): Naval Medical Research Unit. https://apps.dtic.mil/dtic/tr/fulltext/u2/1000455.pdf.
  • Sweeney LM . 2019. Physiologically based pharmacokinetic modeling of airborne lead in support of development of an occupational exposure limit for department of defense workers. Aeromedical Research Dept/FHOF, 2510 Fifth St., Bldg. 840, Wright-Patterson AFB, OH 45433-7913: Office of the Assistant Secretary of Defense – Energy, Installations, and Environment 4800 Mark Center Drive, Suite 16F16 Alexandria, VA 22350 AFRL-SA-WP-TR-2019-0003.
  • Tak S , Roscoe RJ , Alarcon W , Ju J , Sestito JP , Sussell AL , Calvert GM . 2008. Characteristics of US workers whose blood lead levels trigger the medical removal protection provision, and conformity with biological monitoring requirements, 2003-2005. Am J Ind Med. 51(9):691–700. doi:10.1002/ajim.20603
  • U.S. EPA. 2001. Review of adult lead models evaluation of models for assessing human health risks associated with lead exposure at non-residential areas of superfund and other hazardous waste sites. OSWER 9285.7-46.
  • U.S. EPA. 2017. Update of the adult lead methodology’s default baseline blood lead concentration and geometric standard deviation parameters and the integrated exposure uptake biokinetic model’s default maternal blood lead concentration at birth variable. ELEM Directive 9285.6-56. May. https://www.epa.gov/superfund/lead-superfund-sites-guidance.
  • U.S. EPA. 2020. Lead at Superfund sites: frequent questions from risk assessors on the adult lead methodology [accessed February 21, 2020]. https://www.epa.gov/superfund/lead-superfund-sites-frequent-questions-risk-assessors-adult-lead-methodology#receptor.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.