2,285
Views
2
CrossRef citations to date
0
Altmetric
Invited Article

Wearable inertial sensors for objective kinematic assessments: A brief overview

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Amasay T, Zodrow K, Kincl L, Hess J, Karduna A. 2009. Validation of tri-axial accelerometer for the calculation of elevation angles. Int J Ind Ergon. 39(5):783–789. doi:10.1016/j.ergon.2009.03.005
  • Arvidsson I, Dahlqvist C, Enquist H, Nordander C. 2021. Action levels for the prevention of work-related musculoskeletal disorders in the neck and upper extremities: A proposal. Ann Work Expos Health. 65(7):741–747. doi:10.1093/annweh/wxab012
  • Bachmann ER, Yun X, Peterson CW. 2004. An investigation of the effects of magnetic variations on inertial/magnetic orientation sensors. IEEE International Conference on Robotics and Automation, 2004 Proceedings ICRA'04 2004, New Orleans, LA.
  • Baghdadi A, Cavuoto LA, Jones-Farmer A, Rigdon SE, Esfahani ET, Megahed FM. 2021. Monitoring worker fatigue using wearable devices: a case study to detect changes in gait parameters. J Qual Technol. 53(1):47–71. doi:10.1080/00224065.2019.1640097
  • Balogh I, Arvidsson I, Björk J, Hansson G-Å, Ohlsson K, Skerfving S, Nordander C. 2019. Work-related neck and upper limb disorders–quantitative exposure–response relationships adjusted for personal characteristics and psychosocial conditions. BMC Musculoskelet Disord. 20(1):139. doi:10.1186/s12891-019-2491-6
  • Bassett DR, Jr. 2000. Validity and reliability issues in objective monitoring of physical activity. Res Q Exer Sport. 71(sup2):30–36. doi:10.1080/02701367.2000.11082783
  • Bergamini E, Ligorio G, Summa A, Vannozzi G, Cappozzo A, Sabatini AM. 2014. Estimating orientation using magnetic and inertial sensors and different sensor fusion approaches: accuracy assessment in manual and locomotion tasks. Sensors. 14(10):18625–18649. doi:10.3390/s141018625
  • Briggs AM, Shiffman J, Shawar YR, Åkesson K, Ali N, Woolf AD. 2020. Global health policy in the 21st century: challenges and opportunities to arrest the global disability burden from musculoskeletal health conditions. Best Pract Res Clin Rheumatol. 34(5):101549. doi:10.1016/j.berh.2020.101549
  • Briggs AM, Woolf AD, Dreinhöfer K, Homb N, Hoy DG, Kopansky-Giles D, Åkesson K, March L. 2018. Reducing the global burden of musculoskeletal conditions. Bull World Health Organ. 96(5):366–368. doi:10.2471/BLT.17.204891
  • Buckle PW, Devereux JJ. 2002. The nature of work-related neck and upper limb musculoskeletal disorders. Appl Ergon. 33(3):207–217. doi:10.1016/s0003-6870(02)00014-5
  • Bussmann J, Veltink PH, Koelma F, Van Lummel R, Stam H. 1995. Ambulatory monitoring of mobility-related activities: the initial phase of the development of an activity monitor. Eur J Phys Med Rehabil. 5(1):2–7.
  • Chen H. 2017. The effects of movement speeds and magnetic disturbance on inertial measurement unit accuracy: the implications of sensor fusion algorithms in occupational ergonomics applications [doctoral dissertation]. The University of Iowa.
  • Chen H, Schall MC, Jr, Fethke NB. 2017. Effects of movement speed and magnetic disturbance on the accuracy of inertial measurement units. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, SAGE Publications Sage CA, Los Angeles, CA.
  • Chen H, Schall MC, Fethke N. 2018. Accuracy of angular displacements and velocities from inertial-based inclinometers. Appl Ergon. 67:151–161. doi:10.1016/j.apergo.2017.09.007
  • Chen H, Schall MC, Jr, Fethke NB. 2020. Measuring upper arm elevation using an inertial measurement unit: an exploration of sensor fusion algorithms and gyroscope models. Appl Ergon. 89:103187. doi:10.1016/j.apergo.2020.103187
  • Cieza A, Causey K, Kamenov K, Hanson SW, Chatterji S, Vos T. 2020. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 396(10267):2006–2017. doi:10.1016/S0140-6736(20)32340-0
  • Cuesta-Vargas AI, Galan-Mercant A, Williams JM. 2010. The use of inertial sensors system for human motion analysis. Phys Ther Rev. 15(6):462–473. doi:10.1179/1743288X11Y.0000000006
  • de Vries WH, Veeger HE, Baten CT, van der Helm FC. 2009. Magnetic distortion in motion labs, implications for validating inertial magnetic sensors. Gait Posture. 29(4):535–541. doi:10.1016/j.gaitpost.2008.12.004
  • Driscoll T, Jacklyn G, Orchard J, Passmore E, Vos T, Freedman G, Lim S, Punnett L. 2014. The global burden of occupationally related low back pain: estimates from the Global Burden of Disease 2010 study. Ann Rheum Dis. 73(6):975–981. doi:10.1136/annrheumdis-2013-204631
  • Fan B, Li Q, Liu T. 2017. How magnetic disturbance influences the attitude and heading in magnetic and inertial sensor-based orientation estimation. Sensors. 18(2):76. doi:10.3390/s18010076
  • Fan X, Lind CM, Rhen I-M, Forsman M. 2021. Effects of sensor types and angular velocity computational methods in field measurements of occupational upper arm and trunk postures and movements. Sensors. 21(16):5527. doi:10.3390/s21165527
  • Fethke NB, Schall MC, Jr, Chen H, Branch CA, Merlino LA. 2020. Biomechanical factors during common agricultural activities: results of on-farm exposure assessments using direct measurement methods. J Occup Environ Hyg. 17(2-3):85–96. doi:10.1080/15459624.2020.1717502
  • Fisher CJ. 2010. An-1057: Using an accelerometer for inclination sensing. Application Note, Analog Devices. 1–8.
  • Forsman M, Fan X, Rhén I-M, Lind CM. 2022. Concerning a work movement velocity action level proposed in "Action levels for the prevention of work-related musculoskeletal dsorders in the neck and upper extremities: a proposal" by Inger Arvidsson et al. (2021). Ann Work Expo Health. 66(1):130–131. doi:10.1093/annweh/wxab075
  • Granzow R, Schall MC, Smidt M, Davis J, Sesek R, Gallagher S. 2019. Measuring the effect of tool design on exposure to physical risk factors among novice hand planters. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, SAGE Publications Sage CA: Los Angeles, CA.
  • Holtermann A, Schellewald V, Mathiassen SE, Gupta N, Pinder A, Punakallio A, Veiersted KB, Weber B, Takala E-P, Draicchio F, et al. 2017. A practical guidance for assessments of sedentary behavior at work: a PEROSH initiative. Appl Ergon. 63:41–52. doi:10.1016/j.apergo.2017.03.012
  • Horak F, Aboy PMR, McNames J, Greenberg A, Pearson S, Gallino G, Brandon T, Holmstrom L. 2011. Movement monitoring system and apparatus for objective assessment of movement disorders. Google Patents.
  • Hosseinian SM, Zhu Y, Mehta RK, Erraguntla M, Lawley MA. 2019. Static and dynamic work activity classification from a single accelerometer: implications for ergonomic assessment of manual handling tasks. IISE Trans Occup Ergon Hum Factors. 7(1):59–68. doi:10.1080/24725838.2019.1608873
  • Hostler D, Schwob J, Schlader ZJ, Cavuoto L. 2021. Heat stress increases movement jerk during physical exertion. Front Physiol. 12. doi:10.3389/fphys.2021.748981
  • Howard J, Murashov V, Cauda E, Snawder J. 2022. Advanced sensor technologies and the future of work. Am J Indus Med. 65(1):3–11. doi:10.1002/ajim.23300
  • Jacobs JV, Hettinger LJ, Huang Y-H, Jeffries S, Lesch MF, Simmons LA, Verma SK, Willetts JL. 2019. Employee acceptance of wearable technology in the workplace. Appl Ergon. 78:148–156. doi:10.1016/j.apergo.2019.03.003
  • Janz K. 2006. Physical activity in epidemiology: moving from questionnaire to objective measurement. Br J Sports Med. 40(3):191–192. doi:10.1136/bjsm.2005.023036
  • Kim S, Nussbaum MA. 2013. Performance evaluation of a wearable inertial motion capture system for capturing physical exposures during manual material handling tasks. Ergonomics. 56(2):314–326. doi:10.1080/00140139.2012.742932
  • Lebel K, Boissy P, Hamel M, Duval C. 2013. Inertial measures of motion for clinical biomechanics: comparative assessment of accuracy under controlled conditions-effect of velocity. PLoS One. 8(11):e79945. doi:10.1371/journal.pone.0079945
  • Lee JK, Jeon TH. 2019. Magnetic condition-independent 3D joint angle estimation using inertial sensors and kinematic constraints. Sensors. 19(24):5522. doi:10.3390/s19245522
  • Li G, Buckle P. 1999. Current techniques for assessing physical exposure to work-related musculoskeletal risks, with emphasis on posture-based methods. Ergonomics. 42(5):674–695. doi:10.1080/001401399185388
  • Ligorio G, Sabatini AM. 2016. Dealing with magnetic disturbances in human motion capture: A survey of techniques. Micromachines. 7(3):43. doi:10.3390/mi7030043
  • Lim S, D’Souza C. 2020. A narrative review on contemporary and emerging uses of inertial sensing in occupational ergonomics. Int J Ind Ergon. 76:102937. doi:10.1016/j.ergon.2020.102937
  • Luinge HJ, Veltink PH. 2005. Measuring orientation of human body segments using miniature gyroscopes and accelerometers. Med Biol Eng Comput. 43(2):273–282. doi:10.1007/BF02345966
  • Madgwick S. 2010. An efficient orientation filter for inertial and inertial/magnetic sensor arrays. Report x-io and University of Bristol (UK) 25, p. 113–118.
  • Maman ZS, Chen Y-J, Baghdadi A, Lombardo S, Cavuoto LA, Megahed FM. 2020. A data analytic framework for physical fatigue management using wearable sensors. Expert Syst Appl. 155:113405. doi:10.1016/j.eswa.2020.113405
  • Maman ZS, Yazdi MAA, Cavuoto LA, Megahed FM. 2017. A data-driven approach to modeling physical fatigue in the workplace using wearable sensors. Appl Ergon. 65:515–529. doi:10.1016/j.apergo.2017.02.001
  • Mathiassen SE, Burdorf A, Holtermann A, Järvholm B, Knardahl S, Proper K, Punnett L, Straker L, Søgaard K. 2015. Occupational epidemiology: six guiding principles for future studies of physical work load and its effects on health and performance. Proceedings 19th Triennial Congress of the IEA, Melbourne, Australia.
  • Merino G, da Silva L, Mattos D, Guimarães B, Merino E. 2019. Ergonomic evaluation of the musculoskeletal risks in a banana harvesting activity through qualitative and quantitative measures, with emphasis on motion capture (Xsens) and EMG. Int J Ind Ergon. 69:80–89. doi:10.1016/j.ergon.2018.10.004
  • Nazarahari M, Rouhani H. 2021. 40 years of sensor fusion for orientation tracking via magnetic and inertial measurement units: methods, lessons learned, and future challenges. Inf Fusion. 68:67–84. doi:10.1016/j.inffus.2020.10.018
  • NRC-IOM. 2001. Musculoskeletal disorders and the workplace: low back and upper extremities. Washington (DC): National Academies Press.
  • Öhberg F, Vänn M, Jonzén K, Edström U, Sundström N. 2021. Comparison between two mobile applications measuring shoulder elevation angle—A validity and feasibility study. Med Eng Phys. 98:1–7. doi:10.1016/j.medengphy.2021.10.005
  • Paulich M, Schepers M, Rudigkeit N, Bellusci G. 2018. Xsens MTw Awinda: Miniature wireless inertial-magnetic motion tracker for highly accurate 3D kinematic applications. Xsens: Enschede, The Netherlands. p. 1–9.
  • Perosh recommendations for procedures to measure occupational physical activity and workload [accessed 2021 Aug 8]. https://perosh.eu/project/perosh-recommendations-for-procedures-to-measure-occupational-physical-activity-and-workload/.
  • Porta M, Kim S, Pau M, Nussbaum MA. 2021. Classifying diverse manual material handling tasks using a single wearable sensor. Appl Ergon. 93:103386. doi:10.1016/j.apergo.2021.103386
  • Punnett L, Wegman DH. 2004. Work-related musculoskeletal disorders: the epidemiologic evidence and the debate. J Electromyogr Kinesiol. 14(1):13–23. doi:10.1016/j.jelekin.2003.09.015
  • Ranavolo A, Draicchio F, Varrecchia T, Silvetti A, Iavicoli S. 2018. Wearable monitoring devices for biomechanical risk assessment at work: current status and future challenges—a systematic review. Int J Environ Res Public Health. 15(9):2001. doi:10.3390/ijerph15092001
  • Reid CR, Schall MC, Amick RZ, Schiffman JM, Lu M-L, Smets M, Moses HR, Porto R. 2017. Wearable technologies: how will we overcome barriers to enhance worker performance, health, and safety? Proceedings of the Human Factors and Ergonomics Society Annual Meeting. SAGE Publications Sage CA: Los Angeles, CA.
  • Robert-Lachaine X, Larue C, Denis D, Delisle A, Mecheri H, Corbeil P, Plamondon A. 2020. Feasibility of quantifying the physical exposure of materials handlers in the workplace with magnetic and inertial measurement units. Ergonomics. 63(3):283–292. doi:10.1080/00140139.2019.1612941
  • Robert-Lachaine X, Mecheri H, Larue C, Plamondon A. 2017. Validation of inertial measurement units with an optoelectronic system for whole-body motion analysis. Med Biol Eng Comput. 55(4):609–619. doi:10.1007/s11517-016-1537-2
  • Roetenberg D, Luinge HJ, Baten CT, Veltink PH. 2005. Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation. IEEE Trans Neural Syst Rehabil Eng. 13(3):395–405. doi:10.1109/TNSRE.2005.847353
  • Sabatini AM. 2006. Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing. IEEE Trans Biomed Eng. 53(7):1346–1356. doi:10.1109/TBME.2006.875664
  • Schall MC, Jr, Sesek RF, Cavuoto LA. 2018. Barriers to the adoption of wearable sensors in the workplace: a survey of occupational safety and health professionals. Hum Factors. 60(3):351–362. doi:10.1177/0018720817753907
  • Schall MC, Jr, Zhang X, Chen H, Gallagher S, Fethke NB. 2021. Comparing upper arm and trunk kinematics between manufacturing workers performing predominantly cyclic and non-cyclic work tasks. Appl Ergon. 93:103356. doi:10.1016/j.apergo.2021.103356
  • Schiefer C, Ellegast RP, Hermanns I, Kraus T, Ochsmann E, Larue C, Plamondon A. 2014. Optimization of inertial sensor-based motion capturing for magnetically distorted field applications. J Biomech Eng. 136(12):121008. doi:10.1115/1.4028822
  • Stefana E, Marciano F, Rossi D, Cocca P, Tomasoni G. 2021. Wearable devices for ergonomics: a systematic literature review. Sensors. 21(3):777. doi:10.3390/s21030777
  • van der Molen HF, Foresti C, Daams JG, Frings-Dresen MH, Kuijer PPF. 2017. Work-related risk factors for specific shoulder disorders: a systematic review and meta-analysis. Occup Environ Med. 74(10):745–755. doi:10.1136/oemed-2017-104339
  • Vitali RV, Perkins NC. 2020. Determining anatomical frames via inertial motion capture: a survey of methods. J Biomech. 106:109832. doi:10.1016/j.jbiomech.2020.109832
  • Weber B, Douwes M, Forsman M, Könemann R, Heinrich K, Enquist H, Pinder A, Punakallio A, Uusitalo A, Ditchen D. 2018. Assessing arm elevation at work with technical systems. Partnership for European Research in Occupational Safety and Health (PEROSH), a Network of European Occupational Safety and Health research institutes. p. 1–47. doi:10.23775/20181201
  • Weygers I, Kok M, De Vroey H, Verbeerst T, Versteyhe M, Hallez H, Claeys K. 2020. Drift-free inertial sensor-based joint kinematics for long-term arbitrary movements. IEEE Sensors J. 20(14):7969–7979. doi:10.1109/JSEN.2020.2982459
  • WHO. 2021. Musculoskeletal conditions. 8 February 2021; [updated October 30; accessed 2021 Oct 30]. https://www.who.int/news-room/fact-sheets/detail/musculoskeletal-conditions.
  • Wu A, March L, Zheng X, Huang J, Wang X, Zhao J, Blyth FM, Smith E, Buchbinder R, Hoy D. 2020. Global low back pain prevalence and years lived with disability from 1990 to 2017: estimates from the Global Burden of Disease Study 2017. Ann Transl Med. 8(6):299–299. doi:10.21037/atm.2020.02.175
  • Yang L, Grooten WJ, Forsman M. 2017. An iPhone application for upper arm posture and movement measurements. Appl Ergon. 65:492–500. doi:10.1016/j.apergo.2017.02.012
  • Yun X, Bachmann ER, McGhee RB. 2008. A simplified quaternion-based algorithm for orientation estimation from earth gravity and magnetic field measurements. IEEE Trans. Instrum. Meas. 57(3):638–650. doi:10.1109/TIM.2007.911646
  • Zhang J, Lockhart TE, Soangra R. 2014. Classifying lower extremity muscle fatigue during walking using machine learning and inertial sensors. Ann Biomed Eng. 42(3):600–612. doi:10.1007/s10439-013-0917-0
  • Zhang X, Schall MC, Jr, Chen H, Gallagher S, Davis GA, Sesek R. 2022. Manufacturing worker perceptions of using wearable inertial sensors for multiple work shifts. Appl Ergon. 98:103579. doi:10.1016/j.apergo.2021.103579