642
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Benefits and limitations of field-based monitoring approaches for respirable dust and crystalline silica applied in a sandstone quarry

, , , , , & show all

References

  • Ashley EL, Cauda E, Chubb LG, Tuchman DP, Rubinstein EN. 2020. Performance comparison of four portable FTIR instruments for direct-on-filter measurement of respirable crystalline silica. Ann Work Expos Health. 64(5):536–546. doi:10.1093/annweh/wxaa031
  • Benton-Vitz K, Volckens J. 2008. Evaluation of the pDR-1200 real-time aerosol monitor. J Occup Environ Hyg. 5(6):353–359. doi:10.1080/15459620802009919
  • Cauda E, Chubb L, Reed R, Stepp R. 2018. Evaluating the use of a field-based silica monitoring approach with dust from copper mines. J Occup Environ Hyg. 15(10):732–742. DOI: 10.1080/15459624.2018.1495333.
  • Cauda E, Drake PL, Lee T, Pretorious C. 2014. High-volume samplers for the assessment of respirable silica content in metal mine dust via direct-on-filter analysis. Paper presented at: 10th International Mine Ventilation Congress; Sun City, South Africa.
  • Cauda E, Joy GJ, Miller A, Mischler SE. 2013. Analysis of the silica percent in airborne respirable mine dust samples from U.S. operations. In ASTM STP1565 on Symposium on Silica and Associated Respirable Mineral Particles.
  • Cauda E, Miller A, Drake P. 2016. Promoting early exposure monitoring for respirable crystalline silica: taking the laboratory to the mine site. J Occup Environ Hyg. 13(3):D39–D45. DOI: 10.1080/15459624.2015.1116691.
  • Cecala A, Azman A, Bailey K. 2015. Assessing noise and dust exposure. Aggr Manager. 20(9):32–37.
  • Cecala A, Haas E, Patts J, Cole G, Azman A, O’Brien A. 2017. Helmet-CAM: an innovative tool for exposure assessment of respirable dust and other contaminants. Paper presented at: 16th North American Mine Ventilation Symposium 2017—Colorado School of Mines.
  • Cecala AB, Reed WR, Joy GJ, Westmoreland SC, O'Brien AD. 2013. Helmet-CAM: tool for assessing miners’ respirable dust exposure. Min Eng. 65(9):78–84.
  • Chubb L, Cauda E. 2021a. Direct-on-filter analysis for respirable crystalline silica using a portable FTIR instrument. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Institute for Occupational Safety and Health.
  • Chubb LG, Cauda EG. 2021b. A novel sampling cassette for field-based analysis of respirable crystalline silica. J Occup Environ Hyg. 18(3):103–109. DOI: 10.1080/15459624.2020.1868481.
  • Gamble JF. 2011. Crystalline silica and lung cancer: a critical review of the occupational epidemiology literature of exposure-response studies testing this hypothesis. Crit Rev Toxicol. 41(5):404–465. DOI: 10.3109/10408444.2010.541223.
  • Gressel M, Heitbrink W, McGlothlin J, Fischbach T. 1988. Advantages of real-time data acquisition for exposure assessment. Appl Ind Hyg. 3(11):316–320. doi:10.1080/08828032.1988.10389864
  • Haas EJ, Cecala A. 2017. Quick fixes to improve workers’ health: results using engineering assessment technology. Min Eng. 69(7):105–109. doi:10.19150/me.7622
  • Haas E, Cecala AB, Hoebbel C. 2016. Using dust assessment technology to leverage mine site manager-worker communication and health behavior: a longitudinal case study. J Prog Res Soc Sci. 3(1):154–167.
  • Halterman A, Sousan S, Peters TM. 2017. Comparison of respirable mass concentrations measured by a personal dust monitor and a personal DataRAM to gravimetric measurements. Ann Work Expo Health. 62(1):62–71. DOI: 10.1093/annweh/wxx083.
  • Hart JF, Autenrieth DA, Cauda E, Chubb L, Spear TM, Wock S, Rosenthal S. 2018. A comparison of respirable crystalline silica concentration measurements using a direct-on-filter Fourier transform infrared (FT-IR) transmission method vs. a traditional laboratory X-ray diffraction method. J Occup Environ Hyg. 15(10):743–754. DOI: 10.1080/15459624.2018.1495334.
  • Lee T, Kim SW, Chisholm WP, Slaven J, Harper M. 2010. Performance of high flow rate samplers for respirable particle collection. Ann Occup Hyg. 54(6):697–709. DOI: 10.1093/annhyg/meq050.
  • Leung CC, Yu ITS, Chen WH. 2012. Silicosis. Lancet. 379(9830):2008–2018. doi:10.1016/s0140-6736(12)60235-9.
  • Miller AL, Drake PL, Murphy NC, Noll JD, Volkwein JC. 2012. Evaluating portable infrared spectrometers for measuring the silica content of coal dust. J Environ Monit. 14:48–55. DOI:10.1039/c1em10678c
  • Mischler SE, Tuchman DP, Cauda EG, Colinet JF, Rubinstein EN. 2019. Testing a revised inlet for the personal dust monitor. J Occup Environ Hyg. 16(3):242–249. DOI: 10.1080/15459624.2019.1566732.
  • Nicas M, Simmons BP, Spear RC. 1991. Environmental versus analytical variability in exposure measurements. Am Ind Hyg Assoc J. 52(12):553–557. DOI: 10.1080/15298669191365199.
  • NIOSH, Gressel M, Heitbrink W, Jensen P, Cooper TC, O’Brien DM, McGlothlin JD, Fischbach TJ, Topmiller JL. 1992. Analyzing workplace exposures using direct reading instruments and video exposure monitoring techniques. Cincinnati (OH): U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. p. 92–104.
  • NIOSH. 1994. Silica, crystalline, by XRD: Method 7500. In: Eller PM, Cassinelli ME, editors. NIOSH Manual of analytical methods. 4th ed. Cincinnati (OH): U.S. Department of Health and Human Services, Center for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH). Publication No. 94-113.
  • NIOSH. 2002. NIOSH hazard review: health effects of occupational exposure to respirable crystalline silica. Cincinnati (OH): National Institute for Occupational Safety and Health. Publication No. 2002-129.
  • NIOSH. 2014. Guidelines for performing a Helmet-CAM respirable dust survey and conducting subsequent analysis with the enhanced video analysis of dust exposures (EVADE) software. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH). Publication No. 2014–133.
  • NIOSH. 2018. Design, testing, and modeling of environmental enclosures for controlling worker exposure to airborne contaminants. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH). Information Circular 9531.
  • NIOSH. 2019. Dust control handbook for industrial minerals mining and processing. 2nd ed. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2019–124.
  • NIOSH. 2022. Chapter AM: measuring respirable aerosol with real-time optical monitors. In: Eller PM, Cassinelli ME, editors. NIOSH Manual of analytical methods. 5th ed. Cincinnati (OH): Department of Health and Human Services, National Institute for Occupational Safety and Health, DHHS (NIOSH). www.cdc.gov/niosh/nmam.
  • O’Shaughnessy P, Cavanaugh JE. 2015. Performing T-tests to compare autocorrelated time series data collected from direct-reading instruments. J Occup Environ Hyg. 12(11):743–752. DOI: 10.1080/15459624.2015.1044603.
  • Patts JR, Tuchman DP, Rubinstein EN, Cauda EG, Cecala AB. 2019. Performance comparison of real-time light scattering dust monitors across dust types and humidity levels. Min Metall Explor. 36(4):741–749. DOI: 10.1007/s42461-019-0080-8.
  • Soneja S, Chen C, Tielsch JM, Katz J, Zeger SL, Checkley W, Curriero FC, Breysse PN. 2014. Humidity and gravimetric equivalency adjustments for nephelometer-based particulate matter measurements of emissions from solid biomass fuel use in cookstoves. Int J Environ Res Public Health. 11(6):6400–6416. DOI: 10.3390/ijerph110606400.
  • Stacey P, Lee T, Thorpe A, Roberts P, Frost G, Harper M. 2014. Collection efficiencies of high flow rate personal respirable samplers when measuring arizona road dust and analysis of quartz by X-ray diffraction. Ann Occup Hyg. 58(4):512–523. doi:10.1093/annhyg/met075
  • Tharr D, Zimmer AT. 1997. Case studies: comparative evaluation of dust control technologies on percussion rock-drilling rigs. Appl Occup Environ Hyg. 12(12):782–788. doi:10.1080/1047322X.1997.10390610
  • Tryner J, Good N, Wilson A, Clark ML, Peel JL, Volckens J. 2019. Variation in gravimetric correction factors for nephelometer-derived estimates of personal exposure to PM 2.5. Environ Pollut. 250:251–261. doi:10.1016/j.envpol.2019.03.121
  • Turci F, Pavan C, Leinardi R, Tomatis M, Pastero L, Garry D, Anguissola S, Lison D, Fubini B. 2016. Revisiting the paradigm of silica pathogenicity with synthetic quartz crystals: the role of crystallinity and surface disorder. Part Fibre Toxicol. 13(1):32. DOI: 10.1186/s12989-016-0136-6.
  • Volkwein JC, Vinson RP, McWilliams LJ, Tuchman DP, Mischler SE. 2004. Performance of a new personal respirable dust monitor for mine use. P. H. S. US Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2004-151, Report of Investigations 9663, 2004 Jun: 1-25.
  • Volkwein JC, Vinson RP, Page SJ, McWilliams LJ, Joy GJ, Mischler SE, Tuchman DP. 2006. Laboratory and field performance of a continuously measuring personal respirable dust monitor. P. H. S. US Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2006-145, Report of Investigations 9669, 2006 Sept. p. 1–55.
  • Walker RLT, Cauda E, Chubb L, Krebs P, Stach R, Mizaikoff B, Johnston C. 2021. Complexity of respirable dust found in mining operations as characterized by x‐ray diffraction and ftir analysis. Minerals. 11(4):383. doi:10.3390/min11040383
  • Wang Z, Calderón L, Patton AP, Sorensen Allacci M, Senick J, Wener R, Andrews CJ, Mainelis G. 2016. Comparison of real-time instruments and gravimetric method when measuring particulate matter in a residential building. J Air Waste Manag Assoc. 66(11):1109–1120. DOI: 10.1080/10962247.2016.1201022.
  • Wei S, Kulkarni P, Ashley K, Zheng L. 2017. Measurement of crystalline silica aerosol using quantum cascade laser–based infrared spectroscopy. Sci Rep. 7(1):13860. DOI: 10.1038/s41598-017-14363-3.
  • Zheng L, Kulkarni P, Birch ME, Ashley K, Wei S. 2018. Analysis of crystalline silica aerosol using portable Raman spectrometry: feasibility of near real-time measurement. Anal Chem. 90(10):6229–6239. DOI: 10.1021/acs.analchem.8b00830.
  • Zuidema C, Stebounova LV, Sousan S, Thomas G, Koehler K, Peters TM. 2019. Sources of error and variability in particulate matter sensor network measurements. J Occup Environ Hyg. 16(8):564–574. DOI: 10.1080/15459624.2019.1628965.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.