275
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Background radiation and cancer risks: A major intellectual confrontation within the domain of radiation genetics with multiple converging biological disciplines

&

References

  • Adolph EF. 1949. Quantitative relationships in the physiological constitutions of mammals. Science. 109(2841):579–585. doi: 10.1126/science.109.2841.579.
  • Albert RE. 1994. Carcinogen risk assessment in the US Environmental Protection Agency. Crit Rev Toxicol. 24(1):75–85. doi: 10.3109/10408449409017920.
  • Babcock EB, Collins JL. 1929. Does natural ionizing radiation control rate of mutation? Proc Natl Acad Sci USA. 15(8):623–628. doi: 10.1073/pnas.15.8.623.
  • Billen D. 1990. Spontaneous DNA damage and its significance for the negligible dose controversy in radiation protection. Rad. Res. 124(2):242–245. doi: 10.2307/3577872.
  • Blackburn H. 2021. John ‘Jack’ Gofmann. Researcher and social activist. ‘Fair-haired boy’ and ‘enemy within’. Amer J Cardiol. 154:111–117. doi: 10.1016/j.amjcard.2021.05.051.
  • Calabrese EJ. 2009. The road to linearity: why linearity at low does became the basis for carcinogen risk assessment. Arch Toxicol. 83(3):203–225. doi: 10.1007/s00204-009-0412-4.
  • Calabrese EJ. 2017a. The threshold vs LNT showdown: dose rate findings exposed flaws in the LNT model. Part 1. The Russell-Muller debate. Environ Res. 154:435–451. doi: 10.1016/j.envres.2016.12.006.
  • Calabrese EJ. 2017b. The threshold vs LNT showdown: dose rate findings exposed flaws in the LNT model. Part 2 How a mistake lead BEIR I to adopt LNT. Environ Res. 154:452–458. doi: 10.1016/j.envres.2016.11.024.
  • Calabrese EJ. 2017c. Flaws in the LNT single-hit model for cancer risk: an historical assessment. Environ Res. 158:773–788. doi: 10.1016/j.envres.2017.07.030.
  • Calabrese EJ. 2019. The linear no-threshold (LNT) dose response model: a comprehensive assessment of its historical and scientific foundations. Chem Biol Interact. 301:6–25. doi: 10.1016/j.cbi.2018.11.020.
  • Calabrese EJ. 2020. The Muller-Neel dispute and the fate of cancer risk assessment. Environ Res. 190:109961. doi: 10.1016/j.envres.2020.109961.
  • Calabrese EJ. 2023. The Gofman-Tamplin cancer risk controversy and its impact on the creation of BEIR I and the acceptance of LNT. Med Lav. 114(1):e20023007. doi: 10.23749/mdl.v114i1.14006.
  • Calabrese EJ, Shamoun DY, Agathokleous E. 2022. Dose-response and risk assessment: Evolutionary foundations. Environ Pollut. 309:119787. doi: 10.1016/j.envpol.2022.119787.
  • Crow JF. 1995. Quarreling geneticists and a diplomat. Genetics. 140(2):421–426. doi: 10.1093/genetics/140.2.421.
  • Dannenberg H. 1958. On endogenous carcinogenesis. Dtsch Med Wochenschr. 83(39):1726–1732. doi: 10.1055/s-0028-1113859.
  • De Bont R, van Larebeke N. 2004. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis. 19(3):169–185. doi: 10.1093/mutage/geh025.
  • Fitzpatrick JL, Lupold S. 2014. Sexual selection and the evolution of sperm quality. Mol Hum Reprod. 20(12):1180–1189. doi: 10.1093/molehr/gau067.
  • Garcia-Rodriguez A, Gosalvez J, Agarwal A, Roy R, Johnston S. 2018. DNA damage and repair in human reproductive cells. IJMS. 20(1):31. doi: 10.3390/ijms20010031.
  • Giles N. 1940. Spontaneous chromosome aberrations in Tradescantia. Genetics. 25(1):69–87. doi: 10.1093/genetics/25.1.69.
  • Glass B. 1957. The genetic hazards of nuclear radiations. Science. 126(3267):241–246. doi: 10.1126/science.126.3267.241.
  • Gofman JW, Tamplin AR. 1970. ‘Population control’ through nuclear pollution. Chicago (IL): Nelson-Hall Co. Publishers.
  • Gofman JW, Tamplin AR. 1971. Poison power. Emmanus (PA): Rodale Press, Inc.
  • Gofman AR, Tamplin AR. 1970. Documents submitted by Dr. John W. Gofman. Bio-medical Research Division, Lawrence Radiation Laboratory. VIII. Document No. 9. Major fallacies in the AEC staff comments on demonstrated validity of the doubling dose concept as used by Gofman and Tamplin. Hearings of the Joint Committee on Atomic Energy, 91st Congress of the United States. GT-111-70, p. 2133.
  • Goodspeed TH, Olson AR. 1928. The production of variation in nicotine species by X-ray treatment of sex cells. Proc Natl Acad Sci U S A. 14(1):66–69. doi: 10.1073/pnas.14.1.66.
  • Gupta RC, Lutz WK. 1999. Background DNA damage from endogenous and unavoidable exogenous carcinogens: A basis for spontaneous cancer incidence? Mut Res. 424:1–8.
  • Gupta RC, Spencer-Beach G. 1996. Natural and endogenous DNA adducts as detected by 32P-postlabeling. Regul Toxicol Pharmacol. 23(1 Pt 1):14–21. doi: 10.1006/rtph.1996.0003.
  • Haldane JB. 1955.  Genetical effects of radiation from products of nuclear explosions. Nature . 176(4472):115–115. doi: 10.1038/176115a0.
  • Haldane JB. 1956a. Untitled letter to editor. Nature. 177(4501):227. doi: 10.1038/177227a0.
  • Haldane JB. 1956b. Radiation hazards. Lancet. 270(6931):1066. doi: 10.1016/s0140-6736(56)90828-5.
  • Harman D. 1956. Aging-A theory based on free-radical and radiation chemistry. J Gerontol. 11(3):298–300. doi: 10.1093/geronj/11.3.298.
  • Harman D. 1962. Role of free radical in mutation, cancer, aging, and maintenance of life. Rad Res. 16(5):753. doi: 10.2307/3571274.
  • Harman D. 1980. Free-radical theory of aging-origin of life, evolution, and aging. Age. 3(4):100–102. doi: 10.1007/BF02432267.
  • Hart RW, Setlow RB. 1974. Correlation between deoxyribonucleic acid excision-repair and life-span in a number of mammalian species. Proc Natl Acad Sci U S A. 71(6):2169–2173. doi: 10.1073/pnas.71.6.2169.
  • Huxley JBS. 1955. Genetical effects of radiation from products of nuclear explosions. Nature. 177:227.
  • Jackson AL, Loeb LA. 2001. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat Res. 477(1-2):7–21. doi: 10.1016/s0027-5107(01)00091-4.
  • Junk Science. 2023. Emails reveal: bureaucrats censor radiation risk science fraud by cancelling whistleblowers; Huge implications for nuclear power and more; [accessed 2023 Aug 18]. https://junkscience.com/2023/06/emails-reveal-radiation-safety-establishment-tries-to-censor-blockbuster-debunking-of-the-lnt-and-cleanse-the-health-physics-society-of-lnt-critics/.
  • Kirkwood TBL. 1977. Evolution of aging. Nature. 270(5635):301–304. doi: 10.1038/270301a0.
  • Lindahl T. 1996. Endogenous damage to DNA. Phil Trans Biol Sci. 351:1529–1538.
  • Lindahl T, Barnes DE. 2000. Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol. 65(0):127–133. doi: 10.1101/sqb.2000.65.127.
  • Lutz WK. 1990. Endogenous genotoxic agents and processes as a basis of spontaneous carcinogenesis. Mutat Res. 238(3):287–295. doi: 10.1016/0165-1110(90)90020-c.
  • Lynch M. 2007. The origins of genome architecture. Sunderland (MA): Sinauer Assoc.
  • Lynch M. 2008. The cellular, developmental and population-genetic determinations of mutation-rate evolution. Genetics. 180(2):933–943. doi: 10.1534/genetics.108.090456.
  • Lynch M. 2010a. Rate, molecular spectrum, and consequences of human mutation. Proc Natl Acad Sci U S A. 107(3):961–968. doi: 10.1073/pnas.0912629107.
  • Lynch M. 2010b. Evolution of the mutation rate. Trends Genet. 26(8):345–352. doi: 10.1016/j.tig.2010.05.003.
  • Marnett LJ, Burcham PC. 1993. Endogenous DNA adducts: Potential and paradox. Chem Res Toxicol. 6(6):771–785. doi: 10.1021/tx00036a005.
  • Medical Research Council (MRC). 1956. The hazards to man of nuclear and allied radiations. London: MRC. p. 40–47.
  • Muller HJ. 1927. Artificial transmutation of the gene. Science. 66(1699):84–87. doi: 10.1126/science.66.1699.84.
  • Muller HJ. 1929. The method of evolution. Sci Month. 63(689):481–486. doi: 10.1086/280282.
  • Muller HJ. 1954a. The nature of the genetic effects produced by radiation. In: Hollaender A, editor. Radiation biology, Vol. 1, Chapter 7. New York (NY): McGraw-Hill Book Company. p. 351–473.
  • Muller HJ. 1954b. The manner of production of mutations by radiation. In: Hollaender A, editor. Radiation biology, Vol. 1, Chapter, 8. New York (NY): McGraw-Hill Book Company. p. 475–626.
  • Muller HJ. 1955. How radiation changes the genetic constitution. Bull Atomic Sci. 11(9):329–338. doi: 10.1080/00963402.1955.11453653.
  • Muller HJ. 1956a. Report to BEAR I genetics panel. Muller File. Bloomingdale (IN): Lilly Library, Indiana University.
  • Muller HJ. 1956b. The relation between chromosome changes and gene mutations. Brookhaven Symp Biol. 8:126–147.
  • Muller HJ, Mott-Smith LM. 1930. Evidence that natural radioactivity is inadequate to explain the frequency of “nature” mutations. Proc Natl Acad Sci U S A. 16(4):277–285. doi: 10.1073/pnas.16.4.277.
  • NAS/NRC (National Academy of Sciences/Nuclear Regulatory Commission). 1956. Biological effects of atomic radiation (BEAR). Washington (DC): NAS/NRC.
  • NAS/NRC (National Academy of Sciences/Nuclear Regulatory Commission). 1972. Biological effects of ionizing radiation (BEIR-I). Washington (DC): NAS/NRC.
  • NAS/NRC (National Academy of Sciences/Nuclear Regulatory Commission). 1980. Biological effects of ionizing radiation (BEIR-III). Washington (DC): NAS/NRC.
  • Olson AR, Lewis GN. 1928. Natural radioactivity and the origin of species. Nature. 121(3052):673–674. doi: 10.1038/121673a0.
  • Pinkel D. 1958. The use of body surface area as a criterion of drug dose in cancer chemotherapy. Cancer Res. 18:853–856.
  • Pipkin SB, Sullivan WN. 1959. A search for genetic change in Drosophila melanogaster exposed to cosmic radiation at extreme altitude. Aerosp Med. 30:585–598.
  • Pollycove M, Feinendegen LE. 2003. Radiation-induced versus endogenous DNA damage: possible effect of inducible protective responses in mitigating endogenous damage. Hum Exp Toxicol. 22(6):290–306. doi: 10.1191/0960327103ht365oa.
  • Reddi OS, Rao MS. 1964. Genetic effects of cosmic radiation in Drosophila melanogaster. Nature. 201(4914):96–97. doi: 10.1038/201096a0.
  • Ricci P, Calabrese EJ. 2022. Resolving an open science-policy question: should the LNT still be an omnibus regulatory assumption. Sci Total Environ. 825:153917. doi: 10.1016/j.scitotenv.2022.153917.
  • Ricci PF, Tharmalingam S. 2019. Ionizing radiations epidemiology does not support the LNT model. Chem-Bio Inter. 301:128–140.
  • Robinson AR, Yousefzadeh MJ, Rozgaja TA, Wang J, Li X, Tilstra JS, Feldman CH, Gregg SQ, Johnson CH, Skoda EM, et al. 2018. Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging. Redox Biol. 17:259–273. doi: 10.1016/j.redox.2018.04.007.
  • Russell WL. 1951. X-ray-induced mutations in mice. Cold Spring Harb Symp Quant Biol. 16(0):327–336. doi: 10.1101/sqb.1951.016.01.024.
  • Russell WL. 1967. Factors that affect the radiation induction of mutations in the mouse. An da Acad Brasileira de Ciências. 39:65–75.
  • Russell WL. 1981. Problems and solutions in the estimation of genetic risks from radiation and chemicals. In: Berg GG, Maillie HD, editors, Measurement of risks. New York (NY): Plenum Press, pagesp. 361–380.
  • Russell WL, Kelly EM. 1982. Mutation frequencies in male mice and the estimation of genetic hazards of radiation in men. Proc Natl Acad Sci U S A. 79(2):542–544. doi: 10.1073/pnas.79.2.542.
  • Russell LB, Russell WL. 1996.  Spontaneous mutations recovered as mosaics in the mouse specific-locus test.  Proc Natl Acad Sci U S A. 93(23):13072–13077. doi: 10.1073/pnas.93.23.13072.
  • Russell LB, Russell WL. 1997. Correction: Spontaneous mutations recovered as mosaics in the mouse specific-locus test (vol 93, pg.13072, 1996). Proc Natl Acad Sci U S A. 94(8):4233–4233.
  • Russell WL, Russell LB, Kelly EM. 1958. Radiation dose rate and mutation frequency. Science. 128(3338):1546–1550. doi: 10.1126/science.128.3338.1546.
  • Safe Drinking Water Committee. 1977. Drinking water and health. Washington DC: National Academy of Sciences.
  • Sankaranarayanan K, Wassom JS. 2008. Reflections on the impact of advances in the assessment of genetic risk of exposure to ionizing radiation on international radiation protection recommendations between the med-1950s and the present. Mutat Res. 658(1-2):1–27. doi: 10.1016/j.mrrev.2007.10.004.
  • Selby B, Calabrese EJ. 2023. How self-interest and deception led to the adoption of the linear non-threshold dose response (LNT) model for cancer risk assessment. Sci Total Environ. 898:165402.
  • Setlow RB. 1988. Relevance of phenotypic variation in risk assessment: the scientific viewpoint. In: Woodhead AD, Bender MA, Leonard RC, editors. Phenotypic variation in populations: relevance to risk assessment. New York (NY): Plenum Press. p. 1–5.
  • Smith KC. 1992. Spontaneous mutagenesis: experimental, genetic and other factors. Mutat Res. 277(2):139–162. doi: 10.1016/0165-1110(92)90002-q.
  • Soloway AH, LeQuesne PW. 1980. Potential endogenous mutagens-carcinogens. J Theor Biol. 85(1):153–163. doi: 10.1016/0022-5193(80)90286-6.
  • Spencer WP. 1935. The non-random nature of visible mutations in Drosophila. Amer Nat. 69(722):223–238. doi: 10.1086/280595.
  • Spiers FW, Haldane JB. 1956. Genetical effects of radiations from products of nuclear explosions. Nature. 177(4501):226–227. doi: 10.1038/177226b0.
  • Stadler LJ. 1930. Some genetic effects of X-rays in plants. J Heredity. 21(1):3–20. doi: 10.1093/oxfordjournals.jhered.a103249.
  • Sternglass EJ. 1963. Cancer-relation of prenatal radiation to development of disease in childhood. Science. 140(3571):1102–1104. doi: 10.1126/science.140.3571.1102.
  • Sternglass EJ. 1969. Infant mortality and nuclear tests. Bull Atomic Sci. 25(4):18–20. doi: 10.1080/00963402.1969.11455200.
  • Timofeeff-Ressovsky NW, Zimmer KG, Delbruck M. 1935. Nachrichtenvon der gesellschaft der wissenchaften zu Gottingen. Uber die nature der genmutation und der genstruktur. Biologie Band 1:189–245.
  • Totter JR. 1980. Spontaneous cancer and its possible relationship to oxygen-metabolism. Proc Natl Acad Sci U S A. 77(4):1763–1767. doi: 10.1073/pnas.77.4.1763.
  • Tubbs A, Nussenzweig A. 2017. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 168(4):644–656. doi: 10.1016/j.cell.2017.01.002.
  • Vijg J. 2021. From DNA damage to mutations: all roads lead to aging. Ageing Res Rev. 68:101316. doi: 10.1016/j.arr.2021.101316.
  • Wakeford R, Kendal GM, Little MP. 2009. The proportion of childhood leukaemia incidence in Great Britain that may be caused by natural background ionizing radiation. Leukemia. 23(4):770–776. doi: 10.1038/leu.2008.342.
  • Williams GM, Jeffrey AM. 2000. Oxidative DNA damage: endogenous and chemically induced. Regul Toxicol Pharmacol. 32(3):283–292. doi: 10.1006/rtph.2000.1433.
  • Yousefzadeh M, Henpita C, Vyas R, Soto-Palma C, Robbins P, Niedernhofer L. 2021. DNA damage—how and why we age? Elife. 10:e62852. doi: 10.7554/eLife.62852.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.