219
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The role of nanoparticles in bleed air in the etiology of Aerotoxic Syndrome: A review of cabin air-quality studies of 2003–2023

ORCID Icon, &

References

  • Abou-Donia MB, Abou-Donia MM, ElMasry EM, Monro JA, Mulder MFA. 2013. Autoantibodies to nervous system-specific proteins are elevated in sera of flight crew members: biomarkers for nervous system injury. J Toxicol Environ Health A. 76(6):363–380. doi: 10.1080/15287394.2013.765369.
  • Alberto AR, Matos C, Carmona-Aparicio G, Iten M. 2022. Nanomaterials, a new challenge in the workplace. Nanotoxicology in safety assessment of nanomaterials. Adv Exp Med Biol. 1357: 379–401. doi: 10.1007/978-3-030-88071-2_15.
  • Albuquerque PC, Gomes JF, Bordado JC. 2012. Assessment of exposure to airborne ultrafine particles in the urban environment of Lisbon, Portugal. J Air Waste Manag Assoc. 62(4):373–380. doi: 10.1080/10962247.2012.658957.
  • Allen JO, Dookeran NM, Smith KA, Sarofim AF, Taghizadeh K, LaFleur AL. 1996. Measurement of polycyclic aromatic hydrocarbons associated with size-segregated atmospheric aerosols in Massuchusetts. Environ Sci Technol. 30(3):1023–1031. doi: 10.1021/es950517o.
  • Anderson J. 2021. Sources of onboard fumes and smoke reported by U.S. airlines. Aerosp. 8(5):122. doi: 10.3390/aerospace8050122.
  • Anderson J, Scholz D. 2021. Oil fumes, flight safety, and the NTSB. Aerospace. 8(12):389. doi: 10.3390/aerospace8120389.
  • Andrade-Oliva M-d-L-A, Escamilla-Sánchez J, Debray-García Y, Morales-Rubio RA, González-Pantoja R, Uribe-Ramírez M, Amador-Muñoz O, Díaz-Godoy RV, De Vizcaya-Ruiz A, Arias-Montaño J-A. 2020. In vitro exposure to ambient fine and ultrafine particles alters dopamine uptake and release, and D2 receptor affinity and signaling. Environ Toxicol Pharmacol. 80:103484. doi: 10.1016/j.etap.2020.103484.
  • Austin E, Xiang J, Gould TR, Shirai JH, Yun S, Yost MG, Larson TV, Seto E. 2021. Distinct ultrafine particle profiles associated with aiurcraft and roadway traffic. Environ Sci Technol. 55:2847–2858.
  • Azmoun S, Diaz YF, Tang CY, Horton M, Clouston SAP, Luft BJ, Bromet EJ, Gandy S, Placidi D, Mascaro AC, et al. 2022. RG. Cognitive impact of exposure to airborne particles captured by brain imaging. In: Lucchini RG, Aschner M, Costa LG, editors. Advances in neurotoxicology-occupational neurotoxicology. Vol. 7, Chapter 2. Elsevier Inc. p. 29–45. doi: 10.1016/bs.ant.2022.05.002.
  • Bakand S, Hayes A, Dechsakulthorn F. 2012. Nanoparticles: a review of particle toxicology following inhalation exposure. Inhal Toxicol. 24(2):125–135. doi: 10.3109/08958378.2010.642021.
  • Balouet JC, Winder C. 1999. Aerotoxic syndrome in aircrew as a result of exposure to airborne contaminants in aircraft. In: Abstract presented at the American Society of Testing and Materials, Symposium on Air Quality and Comfort in Airliner Cabins, New Orleans, October 27–28.
  • Bendtsen KM, Bengtsen E, Saber AT, Vogel U. 2021. A review of health effects associated with exposure to jet engine emissions in and around airports. Environ Health. 20(1):10. doi: 10.1186/s12940-020-00690-y.
  • Buonanno G, Bernabei M, Avino P, Stabile L. 2012. Occupational exposure to airborne particles and other pollutants in an aviation base. Environ Pollut. 170:78–87. doi: 10.1016/j.envpol.2012.05.027.
  • Burdon J. 2012. Lung injury following hydrocarbon inhalation in aircrew. J Biol Phys Chem. 12:98–102.
  • Burdon J, Budnik LT, Baur X, Hageman G, Howard CV, Roig J, Coxon L, Furlong CE, Gee D, Loraine T, et al. 2023. Health consequences of exposure to aircraft contaminated air and fume events: a narrative review and medical protocol for the investigation of exposed aircrew and passengers. Environ Health. 22(1):43. doi: 10.1186/s12940-023-00987-8.
  • [CAA] Civil Aviation Authority. 2004. Report 2004/04: cabin air quality, Gatwick airport. London (UK).
  • Canesi L, Ciacci C, Balbi T. 2015. Interactive effects of nanoparticles with other contaminants in aquatic organisms: friend or foe? Mar Environ Res. 111:128–134. doi: 10.1016/j.marenvres.2015.03.010.
  • Cao Q, Chen C, Liu S, Lin C-H, Wei D, Chen Q. 2018. Prediction of particle deposition around the cabin air supply nozzles of commercial airplanes using measured in-cabin particle emission rates. Indoor Air. 28(6):852–865. doi: 10.1111/ina.12489.
  • Cao Q, Xu Q, Liu W, Lin C-H, Wei D, Baughcum S, Norris S, Chen Q. 2017. In-flight monitoring of particle deposition in the environmental control system of commercial airliners in China. Atmos Environ. 154:118–128. doi: 10.1016/j.atmosenv.2017.01.044.
  • Carvalho RN, Arukwe A, Ait-Aissa S, Bado-Nilles A, Balzamo S, Baun A, Belkin S, Blaha L, Brion F, Conti D, et al. 2014. Mixtures of chemical pollutants at European legislation safety concentrations: how safe are they? Toxicol Sci. 141(1):218–233. doi: 10.1093/toxsci/kfu118.
  • [CEN] European Committee for Standardization. 2022. Cabin air quality on civil aircraft-chemical compounds. Technical report FprCEN/TR17904. July Brussels.
  • Chen R, Fang L, Liu J, Herbig B, Norrefeldt V, Mayer F, Fox R, Wargocki P. 2021. Cabin air quality on non-smoking commercial flights: a review of published data on airborne pollutants. Indoor Air. 31(4):926–957. doi: 10.1111/ina.12831.
  • Choi HS, Ashitate Y, Lee JH, Kim SH, Matsui A, Insin N, Bawendi MG, Semmler-Behnke M, Frangioni JV, Tsuda A. 2010. Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol. 28(12):1300–1303. doi: 10.1038/nbt.1696.
  • Costa LG, Giordano G, Cole TB, Marsillach J, Furlong CE. 2013. Paraoxonase 1 (PON1) as a genetic determinant of susceptibility to organophosphate toxicity. Toxicology. 3-07:15–22.
  • Crump D, Harrison P, Walton C. 2011, April. Aircraft cabin air sampling report. Institute of Environment and Health, Cranfield University, Part 1 and 2 of the final report. Cranfield report number YE29016V, Cranfield.
  • Davidson GA. 2021. An issue with gas turbines that no one wishes to talk about but is ever present in cabin air. J Biol Phys Chem. 21(3):88–102. doi: 10.4024/11DA21R.jbpc.21.03.
  • de Boer J, Antelo A, van der Veen I, Brandsma S, Lammertse N. 2015. Tricresyl phosphate and the aerotoxic syndrome of flighy crew members-current gaps in knowledge. Chemosphere. 119 Suppl:S58–S61. doi: 10.1016/j.chemosphere.2014.05.015.
  • de Kluizenaar Y, Kuijpers E, Eekhout I, Voogt M, Vermeulen RCH, Hoek G, Sterkenburg RP, Pierik FH, Duyzer JH, Meijer EW, et al. 2017. Personal exposure to UFP in different micro-environments and time of day. Build Environ. 122:237–246. doi: 10.1016/j.buildenv.2017.06.022.
  • de Ree H, van den Berg M, Brand T, Mulder GJ, Simons R, Veldhuijzen van Zanten B, Westerink RHS. 2014. Health risk assessment of exposure to TriCresyl Phosphates (TCPs) in aircraft: a commentary. Neurotoxicology. 45:209–215. doi: 10.1016/j.neuro.2014.08.011.
  • Dechow M, Sohn H, Steinhanses J. 1997. Concentrations of selected contaminants in cabin air of Airbus aircrafts. Chemosphere. 35(1-2):21–31. doi: 10.1016/s0045-6535(97)00135-5.
  • Denola G, Hanhela PJ, Mazurek W. 2011. Determination of tricresylphosphate air contamination in aircraft. Ann Occup Hyg. 55(7):710–722.
  • Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, et al. 2006. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect. 114(8):1172–1178. doi: 10.1289/ehp.9030.
  • Elsaesser A, Howard CV. 2012. Toxicology of nanoparticles. Adv Drug Deliv Rev. 64(2):129–137. doi: 10.1016/j.addr.2011.09.001.
  • Ferguson CS, Tyndale RF. 2011. Cytochrome P450 enzymes in the brain: emerging evidence of biological significance. Trends Pharmacol Sci. 32(12):708–714. doi: 10.1016/j.tips.2011.08.005.
  • Fushimi A, Saitoh K, Fujitani Y, Takegawa N. 2019. Identification of jet lubrication oil as a major component of aircraft exhaust nanoparticles. Atmos Chem Phys. 19(9):6389–6399. doi: 10.5194/acp-19-6389-2019.
  • Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P. 2005. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect. 113(11):1555–1560. doi: 10.1289/ehp.8006.
  • Gerber L-S, van Kleef RGDM, Fokkens P, Cassee FR, Westerink RHS. 2023. In vitro neurotoxicity screening of engine oil- and hydraulic fluid-derived aircraft cabin bleed-air contamination. J Neurotoxicol. 96:184–196. doi: 10.1016/j.neuro.2023.04.010.
  • Gillespie P, Tajuba J, Lippmann M, Chen L-C, Veronesi B. 2013. Particulate matter neurotoxicity in culture is size-dependent. Neurotoxicology. 36:112–117. doi: 10.1016/j.neuro.2011.10.006.
  • Gladyszewska-Fiedoruk K. 2012. Indoor air quality in the cabin of an airliner. J Air Transport Manag. 20:28–30.
  • Guan J, Gao K, Wang C, Yang X, Lin C-H, Lu C, Gao P. 2014. Measurements of volatile organic compounds in aircraft cabins. Part 1: methodology and detected VOC species in 107 commercial flights. Build Environ. 72:154–161. doi: 10.1016/j.buildenv.2013.11.002.
  • Guan J, Jia Y, Wei Z, Tian X. 2019. Temporal variation of ultrafine particle concentrations in aircraft cabin: a field study. Build Environ. 153:118–127. doi: 10.1016/j.buildenv.2019.02.025.
  • Hafsat M, Walton C, Maigari AK, Mohammed HA, Galadima US. 2019. Assessment of ultrafine particles on aircraft cabin at different phases of flight. Int J Adv Acad Res-Sci Technol Engin. 5(5):42–53.
  • Hageman G, Mackenzie Ross SJ, Nihom J, van der Laan G. 2022. Aerotoxic syndrome: a new occupational disease caused by contaminated cabin air?. In: Lucchini RG, Aschner M, Costa LG, editors. Advances in neurotoxicology-occupational neurotoxicology. Vol. 7, Chapter 4. Elsevier Inc. p. 78–132. doi: 10.1016/bs.ant.2022.04.001.
  • Hageman G, Pal TM, Nihom J, MackenzieRoss SJ, van den Berg M. 2020. Three patients with probable aerotoxic syndrome. Clin Toxicol (Phila). 58(2):139–142. doi: 10.1080/15563650.2019.1616092.
  • Hageman G, van Broekhuizen P, Nihom J. 2024. The role of carbon monoxide in aerotoxic syndrome. Neurotoxicol. 100:107–116. doi: 10.1016/j.neuro.2023.12.008.
  • Hartmann NB, Baun A. 2010. The nano cocktail: ecotoxicological effects of engineered nanoparticles in chemical mixtures. Integr Environ Assess Manag. 6(2):311–313. doi: 10.1002/ieam.39.
  • Hayes K, Megson D, Doyle A, O’Sullivan G. 2021. Occupational risk of organophosphates and other chemical and radiative exposure in the aircraft cabin: a systematic review. Sci Total Environ. 796:148742. doi: 10.1016/j.scitotenv.2021.148742.
  • He R-W, Houtzager MMG, Jongeneel WP, Westerink RHS, Cassee FR. 2021. In vitro hazard characterization of simulated aircraft cabin bleed-air contamination in lung models using an air-liquid interface (ALI) exposure system. Environ Int. 166:107365. doi: 10.1016/j.envint.2022.107365.
  • Hecker S, Kincl L, McNeeley E, van Netten C, Harrison R, Murawski J, Vallarino J, Spengler JD, Milton D, Tager I, et al. 2014. Cabin air quality incidents project report. Occupational Health Research Consortium in Aviation (OHRCA), and Airliner Cabin Environment research (ACER), Oregon, Final report July 2014.
  • Heusinkveld HJ, Wahle T, Campbell A, Westerink RHS, Tran L, Johnston H, Stone V, Cassee FR, Schins RPF. 2016. Neurodegenerative and neurological disorders by small inhaled particles. Neurotoxicology. 56:94–106. doi: 10.1016/j.neuro.2016.07.007.
  • Hofman J, Staelens J, Cordell R, Stroobants C, Zikova N, Hama SML, Wyche KP, Kos GPA, van der Zee S, Smallbone KL, et al. 2016. Ultrafine particles in four urban environments: results from a new continuous long-term monitoring network. Atmos Environ. 136:68–81. doi: 10.1016/j.atmosenv.2016.04.010.
  • Houtzager MMG, Havermans JGBA, Bos JGH. 2013. Investigation of presence and concentration of tricresylphosphates in cockpits of KLM Boeing 737 aircraft during normal operational conditions. TNO report, R11976. The Hague: TNO.
  • Houtzager M, Havermans J, Noort D, Joosen M, Bos J, Jongeneel R, van Kesteren P, Heusinkveld H, van Kamp I, Brandsma S, et al. 2017. Characterisation of the toxicity of aviation turbine engine oils after pyrolysis (AVOIL). Cologne (Germany): European Aviation Safety Agency; https://www.easa.europa.eu/document-library/research-reports/easarepresea20152.
  • Houtzager M, Heslinga D, Spek F, Norde E, Heine P, Schafai M, Bezold A, Mayer F, Forejt L, Jongeneel R, et al. 2021. Investigation of air-quality levels inside the cabin of large transport aircraft and their health implications. FACTS: Fresh Aircraft. Deliverable 07. https://www.facts.aero/images/Status/FACTS-D7-Final_Report.pdf.
  • Howard CV. 2020. Inappropriate use of risk assessment in addressing health hazards posed by civil aircraft cabin air. Open Acc J Toxicol. 4(2):65–72.
  • Howard CV, Johnson DW, Morton J, Michaelis S, Supplee D, Burdon J. 2018. Is a cumulative exposure to a background aerosol of nanoparticles part of the causal mechanism of aerotoxic syndrome? Nanomed Nanosci Research. 1:JNAN-139.
  • Hudda N, Simon MC, Zamore W, Durant JL. 2018. Aviation related impacts on ultrafine particle number concentrations outside and inside residences near an airport. Environ Sci Technol. 52(4):1765–1772. doi: 10.1021/acs.est.7b05593.
  • Jones B, Levin A. 2022. Experimental characterization of aircraft bleed air particulate contamination. ASHRAE Research Project report 1830-RP. Atlanta: American Society of Heating, Refrigerating and Airconditioning Engineers (ASHRAE).
  • Jonsdottir HR, Delaval M, Leni Z, Keller A, Brem BT, Siegerist F, Schönenberger D, Durdina L, Elser M, Burtscher H, et al. 2019. Non-volatile particle emissions from aircraft turbine engines at ground-idle induce oxidative stress in bronchial cells. Nature Comm Biol. 2:90.
  • Kerminen V-M, Chen X, Vakkari V, Petäjä T, Kulmala M, Bianchi F. 2018. Atmospheric new particle formation and growth: review of field observations. Environ Res Lett. 13(10):103003. doi: 10.1088/1748-9326/aadf3c.
  • Kessler A, Hedberg J, Blomberg E, Odnevall I. 2022. Reactive oxygen species formed by metal and metal oxide nanoparticles in physiological media – a review of reactions of importance to nanotoxicity and proposal for characterization. Nanomaterials. 12(11):1922. doi: 10.3390/nano12111922.
  • Keuken MP, Moerman M, Zandveld P, Henzing JS, Hoek G. 2015. Total and size-resolved particle number and black carbon concentrations in urban areas near Schiphol airport (the Netherlands). Atmos Environ. 104:132–142. doi: 10.1016/j.atmosenv.2015.01.015.
  • Knibbs LD, Cole-Hunter T, Morawska L. 2011. A review of commuter exposure to ultrafine particles and its health effects. Atmos Environ. 45(16):2611–2622. doi: 10.1016/j.atmosenv.2011.02.065.
  • Ku HK, Lee M-H, Boo H, Song G-D, Lee D, Yoo K, Park BG. 2023. Performance assessment of HEPA filter to reduce internal dose against radioactive aerosol in nuclear decommissioning. Nucl Engin Technol. 55(5):1830–1837. doi: 10.1016/j.net.2023.01.016.
  • Kulmala M, Petäjä T, Ehn M, Thornton J, Sipilä M, Worsnop DR, Kerminen V-M. 2014. Chemistry of atmospheric nucleation: on the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation. Annu Rev Phys Chem. 65(1):21–37. doi: 10.1146/annurev-physchem-040412-110014.
  • Kwon H-S, Ryu MH, Carlsten C. 2020. Ultrafine particles: unique physicochemical properties relevant to health and disease. Exp Mol Med. 52(3):318–328. doi: 10.1038/s12276-020-0405-1.
  • Lamba JK, Lin YS, Schuetz EG, Thummel K. 2002. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev. 54(10):1271–1294. doi: 10.1016/s0169-409x(02)00066-2.
  • Lammers A, Janssen NAH, Boere AJF, Berger M, Longo C, Vijverberg SJH, Neerincx AH, Maitland-van der Zee AH, Cassee FR. 2020. Effects of short-term exposures to ultrafine particles near an airport in healthy subjects. Environ Int. 141:105779. doi: 10.1016/j.envint.2020.105779.
  • Levesque S, Taetzsch T, Lull ME, Kodavanti U, Stadler K, Wagner A, Johnson JA, Duke L, Kodavanti P, Surace MJ, et al. 2011. Diesel exhaust and primes microglia: air pollution, neuroinflammation, and regulation of dopaminergic neurotoxicity. Environ Health Perspect. 119(8):1149–1155. doi: 10.1289/ehp.1002986.
  • Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A. 2003. Ultrafine particulate pollutants induce oxidative stress and mito-chondrial damage. Environ Health Perspect. 111(4):455–460. doi: 10.1289/ehp.6000.
  • Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ. 2007. Exposure to engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol. 41(11):4158–4163. doi: 10.1021/es062629t.
  • Lindgren T, Norbäck D. 2002. Cabin air quality: indoor pollutants and climate during intercontinental flights with and without tobacco smoking. Indoor Air. 12(4):263–272. doi: 10.1034/j.1600-0668.2002.01121.x.
  • Lindgren T, Norbäck D, Wieslander G. 2007. Perception of cabin air quality in airline crew related to air humidification, on intercontinental flights. Indoor Air. 17(3):204–210. doi: 10.1111/j.1600-0668.2006.00467.x.
  • Loehr M, Turner J. 2023. Ultrafine particle ground-level impacts during aircraft approach and climb-out operations at a major cargo hub. Transport Res Rec. 2677(1):1108–1117. doi: 10.1177/03611981221103590.
  • Lucchini RG, Dorman DC, Elder A, Veronesi B. 2012. Neurological impacts from inhalation of pollutants and the nose-brain connection. Neurotoxicology. 33(4):838–841. doi: 10.1016/j.neuro.2011.12.001.
  • Mackenzie Ross SJ. 2008. Cognitive function following exposure to contaminated air on commercial aircraft: a case series of 27 pilots seen for clinical purposes. J Nutr Environ Med. 17(2):111–126. doi: 10.1080/13590840802240067.
  • Maher BA, Ahmed IAM, Karloukovski V, MacLaren DA, Foulds PG, Allsop D, Mann DMA, Torres-Jardón R, Calderon-Garciduenas L. 2016. Magnetite pollution nanoparticles in the human brain. Proc Natl Acad Sci USA. 113(39):10797–10801. doi: 10.1073/pnas.1605941113.
  • Marcias G, Casula MF, Uras M, FalQui A, Miozzi E, Sogne E, Pili S, Pilia I, Fabbri D, Meloni F, et al. 2019. Occupational fine/ultrafine particles and noise exposure in aircraft personnel operating in airport taxiway. Environments. 6(3):35. doi: 10.3390/environments6030035.
  • Masiol M, Harrison RM, Vu TV, Beddows DCS. 2017. Sources of sub-micrometre particles near a major international airport. Atmos Chem Phys. 17(20):12379–12403. doi: 10.5194/acp-17-12379-2017.
  • Michaelis S. 2003. A survey of health symptoms in BALPA Boeing 757 pilots. J Occup Health Safety-Aust NZ. 19(3):253–261.
  • Michaelis S, Burdon J, Howard CV. 2017. Aerotoxic syndrome: a new occupational disease? Public Health Panorama. 3(2):198–211.
  • Michaelis S, Loraine T, Howard CV. 2021. Ultrafine particle levels measured on board short-haul commercial passenger jet aircraft. Environ Health. 20(1):89. doi: 10.1186/s12940-021-00770-7.
  • Miller MR, Raftis JB, Langrish JP, McLean SG, Samutrtai P, Connell SP, Wilson S, Vesey AT, Fokkens PHB, Boere AJF, et al. 2017. Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano. 11(5):4542–4552. doi: 10.1021/acsnano.6b08551.
  • Møller KL, Thygesen LC, Schipperijn J, Loft S, Bonde JP, Mikkelsen S, Brauer C. 2014. Occupational exposure to ultrafine particles among airport employees-combining personal monitoring and global positioning system. PLoS One. 9(9):e106671. doi: 10.1371/journal.pone.0106671.
  • Moorthy KK, Sreekanth V, Chaubey JP, Gogoi MM, Babu SS, Kompalli SK, Bagare SP, Bhatt BC, Gaur VK, Prabhu TP, et al. 2011. Fine and ultrafine particles at a near–free tropospheric environment over the high‐altitude station Hanle in the Trans‐Himalaya: new particle formation and size distribution. J Geophys Res. 116(D20):D20212. doi: 10.1029/2011JD016343.
  • Naughton SX, Terry AV, Jr. 2018. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology. 408:101–112. doi: 10.1016/j.tox.2018.08.011.
  • Nemmar A, Hoet PHM, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts MF, Vanbilloen H, Mortelmans L, Nemery B. 2002. Passage of inhaled particles into the blood circulation in humans. Circulation. 105(4):411–414. doi: 10.1161/hc0402.104118.
  • Oberdörster G, Elder A, Rinderknecht A. 2009. Nanoparticles and the brain: cause for concern? J Nanosci Nanotechnol. 9(8):4996–5007. doi: 10.1166/jnn.2009.gr02.
  • Oberdörster G, Ferin J, Lehnert BE. 1994. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect. 102 Suppl 5(suppl 5):173–179. doi: 10.1289/ehp.94102s5173.
  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C. 2004. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol. 16(6-7):437–445. doi: 10.1080/08958370490439597.
  • Packroff R. 2015. Health effects arising from nanotechnologies: consequences for regulation and safety research. BAUA report. Field measurement report number 3. June 11.
  • Pietroiusti A, Stockmann-Juvala H, Lucaroni F, Savolainen K. 2018. Nanomaterial exposure, toxicity, and impact on human health. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 10(5):e1513. doi: 10.1002/wnan.1513.
  • Poulsen SS, Jacobsen NR, Hadrup N, Hougaard KS, Saber AT, Vogel U. 2018. Carbon nanotubes: scientific basis for setting a health-based occupational exposure limit. Copenhagen (Denmark): The National Research Centre for the Working Environment.
  • Qi Y, Wei S, Xin T, Huang C, Pu Y, Ma J, Zhang C, Liu Y, Lynch I, Liu S. 2022. Passage of exogeneous particles from the lung into the brain in humans and animals. Proc Natl Acad Sci USA. 119(26):e2117083119.
  • Ramsden JJ. 2014. The potential role of aircraft cabin aerial dust for transporting semivolatile organic contaminants into the lungs. J Biol Phys Chem. 14(3):71–74. doi: 10.4024/12RA14L.jbpc.14.03.
  • Ren J, Liu J, Cao X, Li F, Li J. 2018. Ultrafine particles in the cabin of a waiting commercial airliner at Tianjin International Airport, China. Indoor Built Environ. 27(9):1247–1258. doi: 10.1177/1420326X17713257.
  • Rivera-Rios JC, Joo T, Takeuchi M, Orlando TM, Bevington T, Mathis JW, Pert CD, Tyson BA, Anderson-Lennert TM, Smith JA, et al. 2021. In-flight particulate matter concentrations in commercial flights are likely lower than other indoor environments. Indoor Air. 31(5):1484–1494. doi: 10.1111/ina.12812.
  • Roig J, Domingo C, Burdon J, Michaelis S. 2021. Irritant-induced asthma caused by aerotoxic syndrome. Lung. 199(2):165–170. doi: 10.1007/s00408-021-00431-z.
  • Ross D, Crump D, Hunter C, Perera E, Sheridan A. 2003. Extending cabin air measurements to include older aircraft. Building Research Establishment (BRE) Report 212034, Watford, UK.
  • Schindler BK, Weiss T, Schütze A, Koslitz S, Broding HC, Bünger J, Brüning T. 2013. Occupational exposure of air crews to organophosphate flame retardants after fume events. Arch Toxicol. 89(2):263–264. doi: 10.1007/s00204-015-1449-1.
  • Schneider J, Hings SS, Hock BN, Weimer S, Borrmann S, Fiebig M, Petzold A, Busen R, Kärcher B. 2006. Aircraft-based operation of an aerosol mass spectrometer: measurements of tropospheric aerosol composition. J Aerosol Sci. 37(7):839–857. doi: 10.1016/j.jaerosci.2005.07.002.
  • Schraufnagel DE. 2020. The health effects of ultrafine particles. Exp Mol Med. 52(3):311–317. doi: 10.1038/s12276-020-0403-3.
  • Schuchardt S, Bitsch A, Koch W. 2017. European Aviation Safety Agency (EASA), CAQ-preliminary cabin air quality measurement campaign. Final report EASA_REP_RESEA_2014. Cologne: European Aviation Safety Agency (EASA).
  • Schuchardt S, Koch W, Rosenberger W. 2019. Cabin air quality-quantitative comparison of volatile air contaminants at different flight phases during 177 commercial flights. Build Environ. 148:498–507. doi: 10.1016/j.buildenv.2018.11.028.
  • [SER] Sociaal Economische Raad. 2012, March. Voorlopige nanoreferentiewaarden voor synthetische nanomaterialen. Rapport 12/1. The Hague (Dutch).
  • Shaffo FC, Grodzki AC, Fryer AD, Lein PJ. 2018. Mechanism of organophosphorus pesticide toxicity in the context of airway hyperreactivity and asthma. Am J Physiol Lung Cell Mol Physiol. 315(4):L485–L501. doi: 10.1152/ajplung.00211.2018.
  • Shehadi M. 2019. Particle dispersion analysis in an 11-row Boeing 767 cabin mockup. Sci Technol Built Environ. 25(7):849–857. doi: 10.1080/23744731.2019.1573057.
  • Shirmohammadi F, Sowlat MH, Hasheminassab S, Saffari A, Ban-Weiss G, Sioutas C. 2017. Emission rates of particle number, mass and black carbon by the Los Angeles International Airport (LAX) and its impact on air quality in Los Angeles. Atmos Environ. 151:82–93. doi: 10.1016/j.atmosenv.2016.12.005.
  • Solbu K, Daae HL, Olsen R, Thorud S, Ellingsen DG, Lindgren T, Bakke B, Lundanes E, Molander P. 2011. Organophosphates in aircraft cabin and cockpit air-method development and measurements of contaminants. J Environ Monit. 13(5):1393–1403. doi: 10.1039/c0em00763c.
  • Spengler JD, Vallarino J, McNeely E, Estephan H. 2012. In-flight/onboard monitoring: ACER's component for ASHRAE 1262, part 2, final report April, no RITE-ACER-CoE-2012-6.
  • Stacey B. 2019. Measurement of ultrafine particles at airports: a review. Atmos Environ. 198:463–477. doi: 10.1016/j.atmosenv.2018.10.041.
  • Stafoggia M, Cattani G, Forastiere F, di Menno di Bucchianico A, Gaeta A, Ancona C. 2016. Particle number concentrations near the Rome-Ciampino city airport. Atmos Environ. 147:264–273. doi: 10.1016/j.atmosenv.2016.09.062.
  • Targino AC, Machado BF, Krecl P. 2017. Concentrations and personal exposure to black carbon particles at airports and on commercial flights. Transport Res Part D. 52:128–138. doi: 10.1016/j.trd.2017.03.003.
  • Tsai Y-H, Lein PJ. 2021. Mechanisms of organophosphate neurotoxicity. Curr Opin Toxicol. 26:49–60. doi: 10.1016/j.cotox.2021.04.002.
  • Uddin S, Habibi N, Fowler SW, Behbehani M, Gevao B, Faizuddin M, Gorgun AU. 2023. Aerosols as vectors for contaminants: a perspective based on outdoor aerosol data from Kuwait. Atmosphere. 14(3):470. doi: 10.3390/atmos14030470.
  • Ungeheuer F, Caudillo L, Ditas F, Simon M, van Pinxteren D, Kiliç D, Rose D, Jacobi S, Kürten A, Curtius J, et al. 2022. Nucleation of jet engine vapours is a large source of aviation-related ultrafine particles. Comm Earth Environ. 3:319.
  • Ungeheuer F, van Pinxteren D, Vogel AL. 2021. Identification and source attribution of organic compounds in ultrafine particles near Frankfurt International Airport. Atmos Chem Phys. 21(5):3763–3775. doi: 10.5194/acp-21-3763-2021.
  • van Broekhuizen P, van Broekhuizen F, Cornelissen R, Reijnders L. 2012. Workplace exposure to nanoparticles and the application of provisional nanoreference values in times of uncertain risks. J Nanopart Res. 14(4):770. doi: 10.1007/s11051-012-0770-3.
  • van Broekhuizen P, van Veelen W, Streekstra W-H, Schulte P, Reijnders L. 2012. Exposure limits for nanoparticles: report of an international workshop on nano reference values. Ann Occup Hyg. 56(5):515–524. doi: 10.1093/annhyg/mes043.
  • van Melis LVJ, Heusinkveld HJ, Langendoen C, Peters A, Westerink RHS. 2023. Organophosphate insecticides disturb neuronal network development and function via non-AChE mediated mechanisms. Neurotoxicology. 94:35–45. doi: 10.1016/j.neuro.2022.11.002.
  • Viitanen A-K, Uuksulainen S, Koivisto AJ, Hämeri K, Kauppinen T. 2017. Workplace measurements of ultrafine particles—a literature review. Ann Work Expo Health. 61(7):749–758. doi: 10.1093/annweh/wxx049.
  • Visser M, Gosens I, Bard D, van Broekhuizen P, Janer G, Kuempel E, Riediker M, Vogel U, Dekkers S. 2022. Towards health-based nano reference values HNRVs for occupational exposure: recommendations from an expert panel. NanoImpact. 26:100396. doi: 10.1016/j.impact.2022.100396.
  • Watterson A, Michaelis S. 2019. Use of exposure standards in aviation. Proceedings of the 2017 international aircraft cabin air conference, London. J Health Pollut. 9(24):S1–S142.
  • Westerdahl D, Fruin SA, Fine PL, Sioutas C. 2008. The Los Angeles International Airport as a source of ultrafine particles and other pollutants to nearby communities. Atmos Environ. 42(13):3143–3155. doi: 10.1016/j.atmosenv.2007.09.006.
  • WHO. 2021. WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Geneva: WHO.
  • Williams PI, Trembath J. 2021. Simultaneous inboard and outboard, inflight measurements of ultrafine particle concentrations. Aerosol Sci Technol. 55(5):614–622. doi: 10.1080/02786826.2021.1880544.
  • Wiedensohler A, Wiesner A, Weinhold K, Birmili W, Hermann M, Merkel M, Müller T, Pfeifer S, Schmidt A, Tuch T, et al. 2018. Mobility particle size spectrometer: calibration procedures and measurement uncertainties. Aerosol Sci Technol. 52(2):146–164. doi: 10.1080/02786826.2017.1387229.
  • Winther M, Kousgaard U, Ellermann T, Massling A, Nøjgaard JK, Ketzel M. 2015. Emissions of NOx, particle mass and particle numbers from aircraft main engines, APU's and handling equipment at Copenhagen Airport. Atmos Environ. 100:218–229. doi: 10.1016/j.atmosenv.2014.10.045.
  • Xu B, Liu J, Ren S, Yin W, Chen Q. 2013. Investigation of the performance of airliner cabin air filters throughout lifetime usage. Aerosol Air Qual Res. 13(5):1544–1551. doi: 10.4209/aaqr.2012.11.0330.
  • Yokel R, Grulke E, MacPhail R. 2013. Metal-based nanoparticle interactions with the nervous system: the challenge of brain entry and the risk of retention in the organism. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 5(4):346–373. doi: 10.1002/wnan.1202.
  • Yu Z, Herndon SC, Ziemba LD, Timko MT, Liscinsky DS, Anderson BE, Miake-Lye RC. 2012. Identification of lubricating oil in the particulate matter emissions from engine exhaust of in-service commercial aircraft. Environ Sci Technol. 46(17):9630–9637. doi: 10.1021/es301692t.
  • Yu N, Zhang Y, Zhang M, Li H. 2021. Thermal condition and air quality investigation in commercial airliner cabins. Sustainability. 13(13):7047. doi: 10.3390/su13137047.
  • Zhang J, Chen Z, Shan D, Wu Y, Zhao Y, Li C, Shu Y, Linghu X, Wang B. 2024. Adverse effects of exposure to fine particles and ultrafine particles in the environment on different organs of organisms. J Environ Sci (China). 135:449–473. doi: 10.1016/j.jes.2022.08.013.
  • Zhang X, Liu J, Liu X, Liu C. 2021. Performance optimization of airliner cabin filters. Build Environ. 187:107392. doi: 10.1016/j.buildenv.2020.107392.
  • Zhang X, Liu J, Liu X, Liu C, Chen Q. 2022. HEPA filters for airliner cabins: state of the art and future development. Indoor Air. 32(9):e131003. doi: 10.1111/ina.13103.
  • Zhu Y, Fanning E, Yu RC, Zhang Q, Froines JR. 2011. Aircraft emissions and local air quality impacts from take-off activities at a large international airport. Atmos Environ. 45(36):6526–6533. doi: 10.1016/j.atmosenv.2011.08.062.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.