185
Views
0
CrossRef citations to date
0
Altmetric
Report

Estimating airborne trichloramine levels in indoor swimming pools using the well-mixed box model

ORCID Icon & ORCID Icon

References

  • Abattan SF, Lavoué J, Hallé S, Bahloul A, Drolet D, Debia M. 2021. Modeling occupational exposure to solvent vapors using the two-zone (near-field/far-field) model: a literature review. J Occup Environ Hyg. 18(2):51–64. doi: 10.1080/15459624.2020.1861283.
  • Aggazzotti G, Fantuzzi G, Righi E, Predieri G. 1995. Environmental and biological monitoring of chloroform in indoor swimming pools. J Chromatogr A. 710(1):181–190. doi: 10.1016/0021-9673(95)00432-m.
  • Ahmadpour E, Halle S, Valois I, Ryan PE, Haddad S, Rodriguez M, El Aroussi B, Simard S, Delpla I, Proulx F, et al. 2022. Temporal and spatial variations in the levels of prominent airborne disinfection by-products at four indoor swimming pools. J Occup Environ Hyg. 19(4):185–196. doi: 10.1080/15459624.2022.2035741.
  • Ahmadpour E, Hallé S, Valois I, Ryan PE, Haddad S, Rodriguez M, Tardif R, Debia M. 2022. Comparison of sampling collection strategies for assessing airborne trichloramine levels in indoor swimming pools. Environ Sci Pollut Res Int. 30(13):36012–36022. doi: 10.1007/s11356-022-24790-z.
  • ANSES. 2010. Évaluation des risques sanitaires liés aux piscines Partie I: piscines réglementées. Avis de l’Afsset Rapport d’expertise collective.
  • ANSES. 2013. Évaluation des risques sanitaires liés aux piscines Partie II: bains à remous. l’Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail.
  • Arnold SF, Shao Y, Ramachandran G. 2017. Evaluation of the well mixed room and near-field far-field models in occupational settings. J Occup Environ Hyg. 14(9):694–702. doi: 10.1080/15459624.2017.1321843.
  • ASHRAE. 2016. ASHRAE handbook—heating, ventilating, and air-conditioning applications. I-P ed. Ventilation for indoor air quality. Atlanta (GA): ANSI, American National Standards Institute.
  • Bessonneau V, Derbez M, Clément M, Thomas O. 2011. Determinants of chlorination by-products in indoor swimming pools. Int J Hyg Environ Health. 215(1):76–85. English. doi: 10.1016/j.ijheh.2011.07.009.
  • Bradford WL. 2014. What bathers put into a pool: a critical review of body fluids and a body fluid analog. Int J Aquat Res Educ. 8(2):168–181. doi: 10.1123/ijare.2013-0028.
  • Bullock WH, Ignacio J, Ignacio JS. 2006. A strategy for assessing and managing occupational exposures. Fairfax (VA): American Industrial Hygiene Association (AIHA)..
  • Catto C, Simard S, Charest-Tardif G, Rodriguez M, Tardif R. 2012. Occurrence and spatial and temporal variations of disinfection by-products in the water and air of two indoor swimming pools. Int J Environ Res Public Health. 9(8):2562–2586. English. doi: 10.3390/ijerph9082562.
  • Cheema WA, Kaarsholm KM, Andersen HR. 2016. Combined UV treatment and ozonation for the removal of by-product precursors in swimming pool water. Water Res. 110:141–149. doi: 10.1016/j.watres.2016.12.008.
  • Chu H, Nieuwenhuijsen MJ. 2002. Distribution and determinants of trihalomethane concentrations in indoor swimming pools. Occup Environ Med. 59(4):243–247. doi: 10.1136/oem.59.4.243.
  • Dyck R, Sadiq R, Rodriguez MJ, Simard S, Tardif R. 2011. Trihalomethane exposures in indoor swimming pools: a level III fugacity model. Water Res. 45(16):5084–5098. doi: 10.1016/j.watres.2011.07.005.
  • Erkul E, Yaz A, Cıngı C, İnançli HM, San T, Bal C. 2014. Effects of indoor swimming pools on the nasal cytology of pool workers. J Laryngol Otol. 128(5):442–446. English. doi: 10.1017/S0022215114000784.
  • Fornander L, Ghafouri B, Lindahl M, Graff P. 2013. Airway irritation among indoor swimming pool personnel: trichloramine exposure, exhaled NO and protein profiling of nasal lavage fluids. Int Arch Occup Environ Health. 86(5):571–580. English. doi: 10.1007/s00420-012-0790-4.
  • Fransman W. 2017. How accurate and reliable are exposure models? Ann Work Expo Health. 61(8):907–910. doi: 10.1093/annweh/wxx068.
  • Gabriel MF, Felgueiras F, Mourão Z, Fernandes EO. 2019. Assessment of the air quality in 20 public indoor swimming pools located in the Northern Region of Portugal. Environ Int. 133(Pt B):105274. doi: 10.1016/j.envint.2019.105274.
  • German Working Group on Indoor Guide Values of the Federal Environment Agency. 2011. Health evaluation of trichloramine in indoor pool air. Federal Health Gazette Health Res. 54(8):997.
  • Goeres DM, Palys T, Sandel BB, Geiger J. 2004. Evaluation of disinfectant efficacy against biofilm and suspended bacteria in a laboratory swimming pool model. Water Res. 38(13):3103–3109. doi: 10.1016/j.watres.2004.04.041.
  • Gouveia P, Felgueiras F, Mourão Z, Fernandes EDO, Moreira A, Gabriel MF. 2019. Predicting health risk from exposure to trihalomethanes in an Olympic-size indoor swimming pool among elite swimmers and coaches. J Toxicol Environ Health A. 82(9):577–590. English. doi: 10.1080/15287394.2019.1634383.
  • Government of Quebec. 2013. Building Act. Décret 115-2013 (chapitre B-1.1). Québec Official Publisher. p. 641–651.
  • Guo Z, Roache NF. 2003. Overall mass transfer coefficient for pollutant emissions from small water pools under simulated indoor environmental conditions. Ann Occup Hyg. 47(4):279–286.
  • Hery M, Hecht G, Gerber JM, Gendre JC, Hubert G, Rebuffaud J. 1995. Exposure to chloramines in the atmosphere of indoor swimming pools. Ann Occup Hyg. 39(4):427–439. doi: 10.1016/0003-4878(95)00013-5.
  • Ilyas H, Masih I, van der Hoek JP. 2018. An exploration of disinfection by-products formation and governing factors in chlorinated swimming pool water. J Water Health. 16(6):861–892. wh2018067-wh2018067. doi: 10.2166/wh.2018.067.
  • Jacobs JH, Spaan S, van Rooy G, Meliefste C, Zaat VAC, Rooyackers JM, Heederik D. 2007. Exposure to trichloramine and respiratory symptoms in indoor swimming pool workers [Article. Eur Respir J. 29(4):690–698. English. doi: 10.1183/09031936.00024706.
  • Jayjock MA, Chaisson CF, Arnold S, Dederick EJ. 2007. Modeling framework for human exposure assessment. J Expo Sci Environ Epidemiol. 17 Suppl 1(S1):S81–S89. doi: 10.1038/sj.jes.7500580.
  • Lee LT, Blatchley ER. 2022. Long-term monitoring of water and air quality at an indoor pool facility during modifications of water treatment. Water. 14(3):335. doi: 10.3390/w14030335.
  • Lévesque B, Vézina L, Gauvin D, Leroux P. 2015. Investigation of air quality problems in an indoor swimming pool: a case study. Ann Occup Hyg. 59(8):1085–1089. doi: 10.1093/annhyg/mev038.
  • Lochner G, Wasner L. 2017. Ventilation requirements for Natatarium. ASHRAE J. 16–24.
  • Lyman WJ, Reehl WF, Rosenblatt DH. 1990. Handbook of chemical property estimation methods: environmental behavior of organic compounds. Washington (DC): American Chemical Society.
  • Nitter TB, Hirsch Svendsen K. 2020. Covariation amongst pool management, trichloramine exposure and asthma for swimmers in Norway. Sci Total Environ. 723:138070. doi: 10.1016/j.scitotenv.2020.138070.
  • Nordberg GF, Lundstrom N-G, Forsberg B, Hagenbjork-Gustafsson A, Lagerkvist BJ-S, Nilsson J, Svensson M, Blomberg A, Nilsson L, Bernard A, et al. 2012. Lung function in volunteers before and after exposure to trichloramine in indoor pool environments and asthma in a cohort of pool workers. BMJ Open. 2(5):e000973. doi: 10.1136/bmjopen-2012-000973.
  • Peng FY, Peng JJ, Li HP, Li Y, Wang BZ, Yang ZG. 2020. Health risks and predictive modeling of disinfection byproducts in swimming pools. Environ Int. 139:105726. doi: 10.1016/j.envint.2020.105726.
  • Ramachandran G. 2005. Occupational exposure assessment for air contaminants. Boca Raton (FL): CRC Press.
  • Ramachandran G, editor. 2022. Improving occupational exposure assessments: generation rate estimation of a disinfectant. John Hopkins ERC. Boca Raton (FL): Bloomberg School of Public Health.
  • Richardson S, Plewa M, Wagner E, Schoeny R, Demarini D. 2007. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat Res. 636(1-3):178–242. doi: 10.1016/j.mrrev.2007.09.001.
  • Rumble J. 2017. CRC handbook of chemistry and physics. 98th ed. CRC Press LLC, Taylor & Francis Group.
  • Saleem S, Dyck R, Hu G, Hewage K, Rodriguez M, Sadiq R. 2019. Investigating the effects of design and management factors on DBPs levels in indoor aquatic centres. Sci Total Environ. 651(Pt 1):775–786. doi: 10.1016/j.scitotenv.2018.09.172.
  • Sander R. 1999. Compilation of Henry’s law constants for inorganic and organic species of potential importance in environmental chemistry. Germany, Maniz.
  • Sander R. 2015. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos Chem Phys. 15(8):4399–4981. doi: 10.5194/acp-15-4399-2015.
  • Schets FM, van den Berg HHJL, Lynch G, de Rijk S, de Roda Husman AM, Schijven JF. 2020. Evaluation of water quality guidelines for public swimming ponds. Environ Int. 137:105516. doi: 10.1016/j.envint.2020.105516.
  • Schlüter U, Arnold S, Borghi F, Cherrie J, Fransman W, Heussen H, Jayjock M, Jensen KA, Koivisto J, Koppisch D, et al. 2022. Theoretical background of occupational-exposure models—Report of an expert workshop of the ISES Europe Working Group “Exposure Models”. Int J Environ Res Public Health. 19(3):1234. doi: 10.3390/ijerph19031234.
  • Schmalz C, Frimmel FH, Zwiener C. 2011. Trichloramine in swimming pools—formation and mass transfer. Water Res. 45(8):2681–2690. doi: 10.1016/j.watres.2011.02.024.
  • Semenov AA, Sakhno TV. 2021. Disinfection of swimming pool water by UV irradiation and ozonation. J Water Chem Technol. 43(6):491–496. doi: 10.3103/S1063455X21060084.
  • Shi Q, Chen Z, Liu H, Lu Y, Li K, Shi Y, Mao Y, Hu H-Y. 2021. Efficient synergistic disinfection by ozone, ultraviolet irradiation and chlorine in secondary effluents. Sci Total Environ. 758:143641. doi: 10.1016/j.scitotenv.2020.143641.
  • Soltermann F, Canonica S, von Gunten U. 2015. Trichloramine reactions with nitrogenous and carbonaceous compounds: kinetics, products and chloroform formation. Water Res. 71:318–329. doi: 10.1016/j.watres.2014.12.014.
  • Spinazzè A, Borghi F, Campagnolo D, Rovelli S, Keller M, Fanti G, Cattaneo A, Cavallo DM. 2019. How to obtain a reliable estimate of occupational exposure? Review and discussion of models’ reliability. Int J Environ Res Public Health. 16(15):2764. doi: 10.3390/ijerph16152764.
  • Swedish Work Environment Authority. 2011. Occupational exposure limits values measures against air contaminants (in Swedish) AFS 2011:18. Solna (Sweden): Swedish Work Environment Authority (SWEA); p. 84.
  • Tsamba L, Cimetière N, Wolbert D, Correc O, Le Cloirec P. 2020. Body fluid analog chlorination: application to the determination of disinfection byproduct formation kinetics in swimming pool water. J Environ Sci (China). 87:112–122. doi: 10.1016/j.jes.2019.06.009.
  • Weaver WA, Li J, Wen Y, Johnston J, Blatchley MR, Blatchley ER. 2009. Volatile disinfection by-product analysis from chlorinated indoor swimming pools. Water Res. 43(13):3308–3318. doi: 10.1016/j.watres.2009.04.035.
  • Westerlund J, Phil L, Bryngelsson I-L, Fornander L, Löfstedt H, Graff P. 2022. Occupational exposure to trichloramine and endotoxins: adverse health effects among personnel in adventure and rehabilitation swimming pool facilities. J Occup Environ Med. 64(5):361–369. doi: 10.1097/JOM.0000000000002483.
  • WorkSafeBC. 2014. Chloramines, safe work practices. Richmond (BC): Workers’ Compensation Board of British Columbia.
  • Wu T, Földes T, Lee LT, Wagner DN, Jiang J, Tasoglou A, Boor BE, Blatchley ER. 2021. Real-time measurements of gas-phase trichloramine (NCl3) in an indoor aquatic center. Environ Sci Technol. 55(12):8097–8107. doi: 10.1021/acs.est.0c07413.
  • Yang L, Chen X, She Q, Cao G, Liu Y, Chang VWC, Tang CY. 2018. Regulation, formation, exposure, and treatment of disinfection by-products (DBPs) in swimming pool waters: a critical review. Environ Int. 121(Pt 2):1039–1057. doi: 10.1016/j.envint.2018.10.024.
  • Zwiener C, Schmalz C. 2015. Ion mobility spectrometry to monitor trichloramine in indoor pool air. In: Karanfil T, Mitch B, Westerhoff P, editors. Recent advances in disinfection by-products. Washington (DC): American Chemical Society; p. 431–446.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.