2,466
Views
117
CrossRef citations to date
0
Altmetric
Articles

Traffic capacity implications of automated vehicles mixed with regular vehicles

, , &
Pages 244-262 | Received 22 Mar 2016, Accepted 18 Oct 2017, Published online: 08 Dec 2017

References

  • TRW. (2015). Forward Looking Safety. Retrieved January 20, 2016 from https://www.trw.com/sites/default/files/TRW_ge_forwardlookingsafety_en.pdf
  • Aeberhard, M., Rauch, S., Bahram, M., Tanzmeister, G., Thomas, J., Pilat, Y., … & Kaempchen, N. (2015). Experience, results and lessons learned from automated driving on Germany's highways. IEEE Intelligent transportation systems magazine, 7(1), 42–57.
  • Antoniotti, M., Desphande, A., & Girault, A. (1997). Microsimulation analysis of multiple merge junctions under autonomous AHS operation. Paper presented at the IEEE Conference on Intelligent Transportation System, (pp. 147–152).
  • Arnaout, G. M., & Arnaout, J. P. (2014). Exploring the effects of cooperative adaptive cruise control on highway traffic flow using microscopic traffic simulation. Transportation Planning and Technology, 37(2), 186–199. doi:10.1080/03081060.2013.870791.
  • Arturo, D., & Nombela, M. (2011). Sartre-Safe Road Trains for the Environment Reducing Fuel Consumption through lower Aerodynamic Drag Coefficient (No. 2011-36-0060). SAE Technical Paper.
  • ArvindRaj, R., Kumar, S., & Karthik, S. (2011). Cruise control operation from zero to preset speed-simulation and implementation. International Journal of Information and Education Technology, 1(1), 9. doi:10.7763/IJIET.2011.V1.2.
  • AutoSpeed (2016). Technology, efficiency, performance. Retrieved January 31, 2016 from http://www.autospeed.com/cms/article.html
  • Berman, B. (2015). Lower-cost lidar is key to self-driving future. Automotive Engineering Magazine, SAE.
  • Brackstone, M., & McDonald, M. (1999). Car-following: A historical review. Transportation Research Part F: Traffic Psychology and Behaviour, 2(4), 181–196. doi:10.1016/S1369-8478(00)00005-X.
  • Carbaugh, J., Godbole, D. N., & Sengupta, R. (1998). Safety and capacity analysis of automated and manual highway systems. Transportation Research Part C: Emerging Technologies, 6(1), 69–99. doi:10.1016/S0968-090X(98)00009-6.
  • Chandler, R. E., Herman, R., & Montroll, E. W. (1958). Traffic dynamics: Studies in car following. Operations Research, 6(2), 165–184. doi:10.1287/opre.6.2.165.
  • Chang, T. H., & Lai, I. S. (1997). Analysis of characteristics of mixed traffic flow of autopilot vehicles and manual vehicles. Transportation Research Part C: Emerging Technologies, 5(6), 333–348. doi:10.1016/S0968-090X(97)00020-X.
  • Cyganski, R., Fraedrich, E., & Lenz, B. (2015). Travel-time valuation for automated driving: A use-case-driven study 2. Paper presented at the Transportation Research Board 94th Annual Meeting (No. 15-4259).
  • Daamen, W., Loot, M., & Hoogendoorn, S. (2010). Empirical analysis of merging behavior at freeway on-ramp. Transportation Research Record, 2188, 108–118. doi:10.3141/2188-12.
  • Delis, A. I., Nikolos, I. K., & Papageorgiou, M. (2015). Macroscopic traffic flow modeling with adaptive cruise control: Development and numerical solution. Computers & Mathematics with Applications, 70(8), 1921–1947. doi:10.1016/j.camwa.2015.08.002.
  • Delphi (2014) Delphi's industry-leading electronically scanning radar brings safety to one million vehicles. Retrieved January 20, 2016 from http://investor.delphi.com/investors/press-releases/press-release-details/2014/Delphis-Industry-Leading-Electronically-Scanning-Radar-Brings-Safety-to-One-Million-Vehicles/default.aspx
  • Dickmann, J. (2014). How we gave sight to the mercedes robotic car. Retrieved January 27, 2016 from http://spectrum.ieee.org/transportation/self-driving/how-we-gave-sight-to-the-mercedes-robotic-car
  • Dongbin, Z., & Zhongpu, X. (2013). Adaptive optimal control for the uncertain driving habit problem in adaptive cruise control system. Paper presented at the IEEE International Conference on Vehicular Electronics and Safety, (pp. 159–164).
  • Ervin, R., Sayer, J., LeBlanc, D., Bogard, S., Mefford, M., Hagan, M., & Winkler, C. (2005). Automotive Collision Avoidance System Field Operational Test Report: Methodology and Results. Report No. UMTRI-2005-7-1 (Ann Arbor, MI: University of Michigan).
  • Falcocchio, J. C., & Levinson, H. S. (2015). Overview of mitigation strategies that reduce traffic demand. In Road traffic congestion: A concise guide (pp. 281–284). Springer International Publishing.
  • Fancher, P. (1998). Intelligent cruise control field operational test. Final report. Volume I: Technical report. (The University of Michigan Transportation Research Institute).
  • Fritzsche, H. T., & Ag, D. B. (1994). A model for traffic simulation. Traffic Engineering + Control, 35(5), 317–321.
  • Garcia-Castro, A., & Monzon, A. (2014). Homogenization effects of variable speed limits. Transport and Telecommunication Journal, 15(2), 130–143. doi:10.2478/ttj-2014-0012.
  • Gazis, D. C., Herman, R., & Potts, R. B. (1959). Car-following theory of steady-state traffic flow. Operations Research, 7(4), 499–505. doi:10.1287/opre.7.4.499.
  • Gipps, P. G. (1981). A behavioural car-following model for computer simulation. Transportation Research Part B: Methodological, 15, 105–111. doi:10.1016/0191-2615(81)90037-0.
  • Godbole, D. N., Eskafi, F., Singh, E., & Varaiya, P. (1995). Design of entry and exit maneuvers for IVHS. Paper presented at the Proceedings of the IEEE American Control Conference (Vol. 5, pp. 3576–3580).
  • Greibe, P. (2007). Braking distance, friction and behavior. Trafitec, Scion-DTU. Retrieved from http://www.trafitec.dk/sites/default/files/publications/braking%20distance%20-%20friction%20and%20driver%20behaviour.pdf
  • Hamdar, S., & Mahmassani, H. (2009). Life in the fast lane: Duration-based investigation of driver behavior differences across freeway lanes. Transportation Research Record, 2124, 89–102. doi:10.3141/2124-09.
  • Herman, R., Montroll, E. W., Potts, R. B., & Rothery, R. W. (1959). Traffic dynamics: Analysis of stability in car following. Operations Research, 7(1), 86–106. doi:10.1287/opre.7.1.86.
  • Heydecker, B. G., & Addison, J. D. (2011). Analysis and modelling of traffic flow under variable speed limits. Transportation Research Part C: Emerging Technologies, 19(2), 206–217. doi:10.1016/j.trc.2010.05.008.
  • Hoogendoorn, R., van Arem, B., & Hoogendoorn, S. (2014). Automated Driving, Traffic Flow Efficiency, and Human Factors: Literature Review. Transportation Research Record, 2422, 113–120. doi:10.3141/2422-13.
  • Ibeo. (2014). Self-driving cars getting closer. Retrieved from http://www.ibeo-as.com/files/themes/ibeo_theme/projects/Nissan/Valeo_News.pdf
  • Jabari, S. E., Zheng, J., & Liu, H. X. (2014). A probabilistic stationary speed–density relation based on Newell's simplified car-following model. Transportation Research Part B: Methodological, 68, 205–223. doi:10.1016/j.trb.2014.06.006.
  • Kato, S., Tsugawa, S., Tokuda, K., Matsui, T., & Fujii, H. (2002). Vehicle control algorithms for cooperative driving with automated vehicles and intervehicle communications. IEEE Transactions on Intelligent Transportation Systems, 3(3), 155–161. doi:10.1109/TITS.2002.802929.
  • Kolosz, Ben, W., Susan, M., Grant-Muller, & Djemame, K. (2014). A macroscopic forecasting framework for estimating socioeconomic and environmental performance of intelligent transport highways. IEEE Transactions on Intelligent Transportation Systems, 15(2), pp. 723–736. doi:10.1109/TITS.2013.2284638.
  • Kou, C. C., & Machemehl, R. B. (1997). Modeling driver behavior during merge maneuvers (No. SWUTC/97/472840-00064-1). Southwest Region University Transportation Center, Center for Transportation Research, University of Texas.
  • Kudarauskas, N. (2007). Analysis of emergency braking of a vehicle. Transport, 22(3), 154–159.
  • Kunze, R., Haberstroh, M., Ramakers, R., Henning, K., & Jeschke, S. (2011). Automated truck platoons on motorways – a contribution to the safety on roads. In Automation, communication and cybernetics in science and engineering 2009/2010 (pp. 415–426), Berlin, Heidelberg: Springer.
  • Lee, S. H., Ahn, D. R., & Yang, J. H. (2014). Mode confusion in driver interfaces for adaptive cruise control systems. Paper presented at the IEEE International Conference on Systems, Man and Cybernetics (pp. 4105–4106).
  • Lin, T. W., Hwang, S. L., & Green, P. A. (2009). Effects of time-gap settings of adaptive cruise control (ACC) on driving performance and subjective acceptance in a bus driving simulator. Safety Science, 47(5), 620–625. doi:10.1016/j.ssci.2008.08.004.
  • Lu, X. Y., Tan, H. S., Shladover, S. E., & Hedrick, J. K. (2004). Automated vehicle merging maneuver implementation for AHS. Vehicle System Dynamics, 41(2), 85–107. doi:10.1076/vesd.41.2.85.26497.
  • Michael, J. B., Godbole, D. N., Lygeros, J., & Sengupta, R. (1998). Capacity analysis of traffic flow over a single-lane automated highway system. Journal of Intelligent Transportation System, 4(1–2), 49–80. doi:10.1080/10248079808903736.
  • Milanés, V., Godoy, J., Villagrá, J., & Pérez, J. (2011). Automated on-ramp merging system for congested traffic situations. IEEE Transactions on Intelligent Transportation Systems, 12(2), 500–508. doi:10.1109/TITS.2010.2096812.
  • Milanés, V., & Shladover, S. E. (2014). Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data. Transportation Research Part C: Emerging Technologies, 48, 285–300. doi:10.1016/j.trc.2014.09.001.
  • Milanés, V., Shladover, S. E., Spring, J., Nowakowski, C., Kawazoe, H., & Nakamura, M. (2014). Cooperative adaptive cruise control in real traffic situations. IEEE Transactions On Intelligent Transportation Systems, 15(1), 296–305. doi:10.1109/TITS.2013.2278494.
  • Nikolaidis, I., & Wu, K. (Eds.). (2010). Ad-Hoc, mobile and wireless networks. Paper presented at the 9th International Conference, ADHOC-NOW 2010, Edmonton, AB, Canada, August 20–22 ( Vol. 6288). Springer.
  • Noon, R. K. (1994). Engineering analysis of vehicular accidents. Boca Raton: CRC Press.
  • Nowakowski, C., Cody, D., O'Connell, J., & Shladover, S. E. (2010). Cooperative adaptive cruise control: Driver acceptance of following gap settings less than one second. Paper presented at the Human Factors and Ergonomics Society 54th Annual Meeting, San Francisco.
  • Nowakowski, C., O'Connell, J., Shladover, S. E., & Cody, D. (2010). Cooperative adaptive cruise control: Driver acceptance of following gap settings less than one second. Paper presented at the Proceedings of the Human Factors and Ergonomics Society Annual Meeting, (Vol. 54, No. 24, pp. 2033–2037). SAGE Publications.
  • Nowakowski, C., Shladover, S. E., Cody, D., Bu, F., O'Connell, J., Spring, J., Dickey, S., & Nelson, D. (2011). Cooperative adaptive cruise control: Testing drivers' choices of following distances (PATH research report UCB-ITS-PRR-2011-01). Available from http://database.path.berkeley.edu/reports/index.cgi?reqtype=displayrecord&record=1032
  • Olia, A. (2016). Modelling and assessment of the transportation potential impacts of connected and automated vehicles (Doctoral dissertation). Retrieved from https://macsphere.mcmaster.ca/handle/11375/19896
  • Olia, A., Abdelgawad, H., Abdulhai, B., & Razavi, S. N. (2016). Assessing the potential impacts of connected vehicles: Mobility, environmental, and safety perspectives. Journal of Intelligent Transportation Systems, 20(3), 229–243. doi:10.1080/15472450.2015.1062728.
  • Olia, A., Abdelgawad, H., Abdulhai, B., & Razavi, S. (2017). Optimizing the number and locations of freeway roadside equipment units for travel time estimation in a connected vehicle environment. Journal of Intelligent Transportation Systems, 21(4), 296–309.
  • Olstam, J. J., & Tapani, A. (2004). Comparison of car-following models (VTI report 960A). Swedish National road and Transport Research Institute.
  • Paramics, Q. (2009). The paramics manuals, version 6.6. 1, Edinburgh, Scotland, UK: Quastone Paramics Ltd.
  • Piccinini, G. F. B., Rodrigues, C. M., Leitão, M., & Simões, A. (2015). Reaction to a critical situation during driving with adaptive cruise control for users and non-users of the system. Safety Science, 72, 116–126. doi:10.1016/j.ssci.2014.09.008.
  • Ploeg, J., Scheepers, B., Van Nunen, E., Van de Wouw, N., & Nijmeijer, H. (2011). Design and experimental evaluation of cooperative adaptive cruise control. Paper presented at the 14th International IEEE Conference on Intelligent Transportation Systems, (pp. 260–265).
  • Pueboobpaphan, R., Liu, F., & Van Arem, B. (2010, September). The impacts of a communication based merging assistant on traffic flows of manual and equipped vehicles at an on-ramp using traffic flow simulation. Paper presented at the 13th International IEEE Conference on Intelligent Transportation Systems, (pp. 1468–1473).
  • Rajamani, R., Tan, H. S., Law, B. K., & Zhang, W. B. (2000). Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons. IEEE Transactions on Control Systems Technology, 8(4), 695–708. doi:10.1109/87.852914.
  • Ran, B., Leight, S., & Chang, B. (1999). A microscopic simulation model for merging control on a dedicated-lane automated highway system. Transportation Research Part C: Emerging Technologies, 7(6), 369–388. doi:10.1016/S0968-090X(99)00028-5.
  • Risto, M. (2014). Cooperative In-Vehicle Advice: A Study into Drivers' Ability and Willingness to follow Tactical Driver Advice, T2014/10, TRAIL Thesis Series, The Netherlands.
  • Saifuzzaman, M., & Zheng, Z. (2014). Incorporating human-factors in car-following models: A review of recent developments and research needs. Transportation Research Part C: Emerging Technologies, 48, 379–403. doi:10.1016/j.trc.2014.09.008.
  • Sakaguchi, T., Uno, A., Kato, S., & Tsugawa, S. (2000). Cooperative driving of automated vehicles with inter-vehicle communications. Paper presented at the IEEE Intelligent Vehicles Symposium (pp. 516–521).
  • Scariza, J. R. (2003). Evaluation of Coordinated and Local Ramp Metering Algorithms using Microscopic Traffic Simulation, MSc. Thesis, MIT.
  • Shladover, S. E., Lu, X.-Y., Cody, D., Nowakowski, C., Qiu, Z., Chow, A., Connell, J., Nienhuis, J., & Su, D. (2010). Development and evaluations of selected mobility applications for VII (PATH research report UCB-ITS-PRR-2010-25). Available from http://database.path.berkeley.edu/reports/index.cgi?reqtype=displayrecord&record=1011
  • Shladover, S. E., Lu, X-Y., & Nowakowski, C. (2011). Development and assessment of selected mobility applications for VII: Principal findings. UC Berkeley: California Partners for Advanced Transportation Technology. Retrieved from http://escholarship.org/uc/item/5r33k6wk
  • Shladover, S. E., Nowakowski, C., Lu, X. Y., & Ferlis, R. (2015). Cooperative adaptive cruise control: Definitions and operating concepts. Paper presented at the Transportation Research Board 94th Annual Meeting (No. 15-3265).
  • Shladover, S. E., Nowakowski, C., O'Connell, J., & Cody, D. (2010). Cooperative adaptive cruise control: Driver selection of car-following gaps, Paper presented at the ITS World Congress, Busan, Korea.
  • Shladover, S., Su, D., & Lu, X. Y. (2012). Impacts of cooperative adaptive cruise control on freeway traffic flow. Transportation Research Record, 2324, 63–70. doi:10.3141/2324-08.
  • Swaroop, D., & Rajagopal, K. R. (2001). A review of constant time headway policy for automatic vehicle following. Paper presented at the Intelligent Transportation Systems (pp. 65–69).
  • Swetha, A., Radhamani, P. V., & Punnekat, S. (2014). Design, analysis and implementation of improved adaptive fault tolerant model for cruise control multiprocessor system. International Journal of Computer Applications, 86, 15, 29.
  • Talebpour, A., Mahmassani, H., & Hamdar, S. (2011). Multiregime sequential risk-taking model of car-following behavior: Specification, calibration, and sensitivity analysis. Transportation Research Record, 2260, 60–66. doi:10.3141/2260-07.
  • Transportation Information and Control Systems (2002). ISO 15622: Adaptive cruise control systems performance requirements and test procedures.
  • Tsekeris, T., & Katerelos, I. (2015). A psycho-social agent-based model of driver behavior dynamics. In Game theoretic analysis of congestion, safety and security (pp. 91–111). Springer International Publishing.
  • U.S. Department of Transportation (2016). Federal automated vehicles policy. National Highway Traffic Safety Administration. Retrived 18 May, 2017 from https://www.transportation.gov/sites/dot.gov/files/docs/AV%20policy%20guidance%20PDF.pdf
  • Uno, A., Sakaguchi, T., & Tsugawa, S. (1999). A merging control algorithm based on inter-vehicle communication. Presented at the IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems (pp. 783–787).
  • Urban Transportation Task Force. (2012). The high cost of congestion in Canadian cities. Ottawa, Canada: Council of Ministers Transportation and Highway Safety.
  • Van Arem, B., Van Driel, C. J., & Visser, R. (2006). The impact of cooperative adaptive cruise control on traffic-flow characteristics. IEEE Transactions on Intelligent Transportation Systems, 7(4), 429–436. doi:10.1109/TITS.2006.884615.
  • Van Hinsbergen, C. P. I. J., Schakel, W. J., Knoop, V. L., van Lint, J. W. C., & Hoogendoorn, S. P. (2015). A general framework for calibrating and comparing car-following models. Transportmetrica A: Transport Science, 11(5), 420–440. doi:10.1080/23249935.2015.1006157.
  • Vander, W. J., Shladover, S., Miller, M., & Kourjanskaia, N. (2002). Effects of adaptive cruise control systems on highway traffic flow capacity. Transportation Research Record, 1800, 78–84. doi:10.3141/1800-10.
  • Varaiya, P., & Shladover, S. E. (1991). Sketch of an IVHS systems architecture. Paper presented at the Vehicle Navigation and Information Systems Conference, ( Vol. 2, pp. 909–922).
  • Copradar. (2016). Vehicle Radar. Retrieved January 31 2016, from http://copradar.com/rdrcar/
  • Vijayenthiran, V. (2015). Volvo, Mercedes and Google accept liability for autonomous cars. Motor authority. Retrieved 28 January, 2016 from http://www.motorauthority.com/news/1100422_volvo-mercedes-and-google-accept-liability-for-autonomous-cars
  • Wang, J. (2005). A simulation model for motorway merging behaviour. Transportation and Traffic Theory, 16, 281–301.
  • Wang, M., Daamen, W., Hoogendoorn, S. P., & van Arem, B. (2014). Rolling horizon control framework for driver assistance systems. Part II: Cooperative sensing and cooperative control. Transportation Research Part C: Emerging Technologies, 40, 290–311.
  • Wang, Z., Kulik, L., & Ramamohanarao, K. (2007). Proactive traffic merging strategies for sensor-enabled cars. Paper presented at the Proceedings of the Fourth ACM international Workshop on Vehicular Ad hoc Networks, (pp. 39–48).
  • Whitwam, R. (2014). How Google's self-driving cars detect and avoid obstacles. ExtremeTech. Accesesed 21 January, 2016 from http://www.extremetech.com/extreme/189486-how-googles-self-driving-cars-detect-and-avoid-obstacles
  • Wiedemann, R. (1974). Simulation des Straßenverkehrsflusses (Traffic flow simulations). Institute for Transportation Science, University of Karlsruhe, Germany.
  • Wired (2016). System that any automaker can use to build self-driving cars. Retrieved January 31, 2016, from http://www.wired.com/2014/11/delphi-automated-driving-system/
  • Wu, C., Peng, L., Huang, Z., Zhong, M., & Chu, D. (2014). A method of vehicle motion prediction and collision risk assessment with a simulated vehicular cyber physical system. Transportation Research Part C: Emerging Technologies, 47, 179–191. doi:10.1016/j.trc.2014.07.002.
  • Xie, Y., Zhang, H., Gartner, N. H., & Arsava, T. (2017). Collaborative merging strategy for freeway ramp operations in a connected and autonomous vehicles environment. Journal of Intelligent Transportation Systems, 21(2), 136–147. doi:10.1080/15472450.2016.1248288.
  • Xu, Q., Hedrick, K., Sengupta, R., & VanderWerf, J. (2002). Effects of vehicle-vehicle/roadside-vehicle communication on adaptive cruise controlled highway systems. Paper presented at the IEEE 56th Vehicular Technology Conference ( Vol. 2, pp. 1249–1253).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.