Publication Cover
Journal of Intelligent Transportation Systems
Technology, Planning, and Operations
Volume 24, 2020 - Issue 2
1,056
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Multi-step-ahead traffic speed forecasting using multi-output gradient boosting regression tree

, , &
Pages 125-141 | Received 20 Nov 2017, Accepted 06 Feb 2019, Published online: 18 Mar 2019

References

  • Ahmed, M. M., & Abdel-Aty, M. (2013). Application of stochastic gradient boosting technique to enhance reliability of real-time risk assessment. Transportation Research Record: Journal of the Transportation Research Board, 2386(1), 26–34. doi:10.3141/2386-04
  • Antoniou, C., Koutsopoulos, H. N., & Yannis, G. (2013). Dynamic data-driven local traffic state estimation and prediction. Transportation Research Part C: Emerging Technologies, 34,89–107. doi:10.1016/j.trc.2013.05.012
  • Bao, Y., Xiong, T., & Hu, Z. (2014a). Multi-step-ahead time series prediction using multiple-output support vector regression. Neurocomputing, 129, 482–493. doi:10.1016/j.neucom.2013.09.010
  • Bao, Y., Xiong, T., & Hu, Z. (2014b). PSO-mismo modeling strategy for multistep-ahead time series prediction. IEEE Transactions on Cybernetics, 44(5), 655–668. doi:10.1109/TCYB.2013.2265084
  • Bontempi, G. (2008). Long term time series prediction with multi-input multi-output local learning. In Proceedings of the 2nd European Symposium on Time Series Prediction (TSP), ESTSP08, Helsinki, Finland, pp. 145–154.
  • Ben Taieb, S., Bontempi, G., Atiya, A. F., & Sorjamaa, A. (2012). A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition. Expert Systems with Applications, 39(8), 7067–7083. doi:10.1016/j.eswa.2012.01.039
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. doi:10.1023/A:1010933404324
  • Chevillon, G. (2007). Direct multi-step estimation and forecasting. Journal of Economic Surveys, 21(4), 746–785. doi:10.1111/j.1467-6419.2007.00518.x
  • Chung, Y. S. (2013). Factor complexity of crash occurrence: An empirical demonstration using boosted regression trees. Accident Analysis & Prevention, 61(8), 107–118. doi:10.1016/j.aap.2012.08.015
  • Cox, D. R. (1961). Prediction by exponentially weighted moving averages and related methods. Journal of the Royal Statistical Society, 23(2), 414–422. doi:10.1111/j.2517-6161.1961.tb00424.x
  • Dumont, M., Marée, R., Wehenkel, L., & Geurts, P. (2009). Fast multi-class image annotation with random subwindows and multiple output randomized trees. In Proceedings of the Fourth International Conference on Computer Vision Theory and Applications, Lisbon, Portugal, Vol. 2, pp. 196–203.
  • Farokhi Sadabadi, K., Hamedi, M., & Haghani, A. (2010). Evaluating moving average techniques in short-term travel time prediction using an AVI data set. In Transportation Research Board 89th Annual Meeting, Washington, DC.
  • Fei, X., Lu, C. C., & Liu, K. (2011). A Bayesian dynamic linear model approach for real-time short-term freeway travel time prediction. Transportation Research Part C: Emerging Technologies, 19(6), 1306–1318. doi:10.1016/j.trc.2010.10.005
  • Guo, F., Krishnan, R., & Polak, J. (2017). The influence of alternative data smoothing prediction techniques on the performance of a two-stage short-term urban travel time prediction framework. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 21(3), 214–226. doi:10.1080/15472450.2017.1283989
  • Hamner, B. (2010). Predicting travel times with context-dependent random forests by modeling local and aggregate traffic flow. In IEEE International Conference on Data Mining Workshops, Sydney, Australia, pp. 1357–1359.
  • Hinsbergen, C. P. I. V., Lint, J. W. C. V., & Zuylen, H. J. V. (2009). Bayesian committee of neural networks to predict travel times with confidence intervals. Transportation Research Part C: Emerging Technologies, 17(5), 498–509.
  • Ikeguchi, T., & Aihara, K. (1995). Prediction of chaotic time series with noise. IEICE Transactions on Fundamentals of Electronics Communications & Computer Sciences, 78(10), 1291–1298.
  • Leshem, G. (2007). Traffic flow prediction using AdaBoost algorithm with random forests as a weak learner. Enformatika, 193, 193–198.
  • Li, L., Chen, X., Li, Z., & Zhang, L. (2013). Freeway travel-time estimation based on temporal-spatial queueing model. IEEE Transactions on Intelligent Transportation Systems, 14(3), 1536–1541. doi:10.1109/TITS.2013.2256132
  • Li, L., Chen, X., & Zhang, L. (2014). Multimodel ensemble for freeway traffic state estimations. IEEE Transactions on Intelligent Transportation Systems, 15(3), 1323–1336. doi:10.1109/TITS.2014.2299542
  • Min, W., & Wynter, L. (2011). Real-time road traffic prediction with spatio-temporal correlations. Transportation Research Part C: Emerging Technologies, 19(4), 606–616. doi:10.1016/j.trc.2010.10.002
  • Qiao, W., Haghani, A., Shao, C. F., & Liu, J. (2016). Freeway path travel time prediction based on heterogeneous traffic data through nonparametric model. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 20(5), 438–448. doi:10.1080/15472450.2016.1149700
  • Segal, M. R. (1992). Tree-structured methods for longitudinal data. Journal of the American Statistical Association, 87(418), 407–418. doi:10.1080/01621459.1992.10475220
  • Segal, M. R., & Xiao, Y. (2011). Multivariate random forests. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1), 80–87. doi:10.1002/widm.12
  • Sorjamaa, A., Hao, J., Reyhani, N., Ji, Y., & Lendasse, A. (2007). Methodology for long-term prediction of time series. Neurocomputing, 70(16–18), 2861–2869. doi:10.1016/j.neucom.2006.06.015
  • Vlahogianni, E. I., Karlaftis, M. G., & Golias, J. C. (2014). Short-term traffic forecasting: Where we are and where we’re going. Transportation Research Part C: Emerging Technologies, 43, 3–19. doi:10.1016/j.trc.2014.01.005
  • Wang, J., & Shi, Q. (2013). Short-term traffic speed forecasting hybrid model based on chaos–wavelet analysis-support vector machine theory. Transportation Research Part C: Emerging Technologies, 27, 219–232. doi:10.1016/j.trc.2012.08.004
  • Wang, Y. (2011). Prediction of weather impacted airport capacity using ensemble learning. IEEE Digital Avionics Systems Conference (Vol.49, pp. 2D6-1–2D6-11).
  • Wei, Y., & Chen, M. C. (2012). Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks. Transportation Research Part C: Emerging Technologies, 21(1), 148–162. doi:10.1016/j.trc.2011.06.009
  • Williams, B., Durvasula, P., & Brown, D. (1998). Urban freeway traffic flow prediction: Application of seasonal autoregressive integrated moving average and exponential smoothing models. Transportation Research Record: Journal of the Transportation Research Board, 1644(1), 132–141. doi:10.3141/1644-14
  • Williams, R. J., & Zipser, D. (1989). A learning algorithm for continually running fully recurrent neural networks. Neural Computation, 1(2), 270–280. doi:10.1162/neco.1989.1.2.270
  • Wu, Y. J., Chen, F., Lu, C. T., & Yang, S. (2016). Urban traffic flow prediction using a spatio-temporal random effects model. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 20(3), 282–293. doi:10.1080/15472450.2015.1072050
  • Xiong, T., Bao, Y., & Hu, Z. (2013). Beyond one-step-ahead forecasting: evaluation of alternative multi-step-ahead forecasting models for crude oil prices. Energy Economics, 40(2), 405–415. doi:10.1016/j.eneco.2013.07.028
  • Zhang, F., Zhu, X., Hu, T., Guo, W., Chen, C., & Liu, L. (2016). Urban link travel time prediction based on a gradient boosting method considering spatiotemporal correlations. ISPRS International Journal of Geo-Information, 5(11), 201. doi:10.3390/ijgi5110201
  • Zhang, X., & Rice, J. A. (2003). Short-term travel time prediction. Transportation Research Part C: Emerging Technologies, 11(3–4), 187–210. doi:10.1016/S0968-090X(03)00026-3
  • Zhang, Y., & Haghani, A. (2015). A gradient boosting method to improve travel time prediction. Transportation Research Part C: Emerging Technologies, 58, 308–324. doi:10.1016/j.trc.2015.02.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.