547
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Prediction of pedestrian dynamics in complex architectures with artificial neural networks

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 556-568 | Received 31 Aug 2018, Accepted 17 May 2019, Published online: 04 Jun 2019

References

  • Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., & Savarese, S. (2016). Social LSTM: Human trajectory prediction in crowded spaces. Paper presented at the IEEE ICCV Conference, Las Vegas, NV, USA (pp. 961–971).
  • Bando, M., Hasebe, K., Nakayama, A., Shibata, A., & Sugiyama, Y. (1995). Dynamical model of traffic congestion and numerical simulation. Physical Review E, 51(2), 1035–1042.
  • Burnham, K., & Anderson, D. (2002). Model selection and multimodel inference. New York, NY: Springer.
  • Chen, Y., Everett, M., Liu, M., & How, J. P. (2017). Socially aware motion planning with deep reinforcement learning. Paper presented at the IEEE IROS Conference (pp. 1343–1350), Vancouver, BC, Canada.
  • Chraibi, M., Ezaki, T., Tordeux, A., Nishinari, K., Schadschneider, A., & Seyfried, A. (2015). Jamming transitions in force-based models for pedestrian dynamics. Physical Review E, 92, 042809.
  • Chraibi, M., Seyfried, A., & Schadschneider, A. (2010). Generalized centrifugal-force model for pedestrian dynamics. Physical Review E, 82(4), 046111.
  • Chraibi, M., Tordeux, A., Schadschneider, A., & Seyfried, A. (2018). Modelling of pedestrian and evacuation dynamics (2nd ed.). In R. A. Meyers (Ed.), Encyclopedia of complexity and systems science (pp. 1–22). Berlin: Springer.
  • Daamen, W. (2004). Modelling passenger flows in public transport facilities (Dissertation), TU Delft, Delft, The Netherlands.
  • Das, P., Parida, M., & Katiyar, V. K. (2015). Analysis of interrelationship between pedestrian flow parameters using artificial neural network. Journal of Modern Transportation, 23(4), 298–309. doi:10.1007/s40534-015-0088-9
  • Duives, D. C., Daamen, W., & Hoogendoorn, S. P. (2013). State-of-the-art crowd motion simulation models. Transportation Research Part C: Emerging Technologies, 37, 193–209. doi:10.1016/j.trc.2013.02.005
  • Forschungszentrum Jülich. (2018a). Bottleneck experiment. Retrieved from http://ped.fz-juelich.de/da/2009unidirClosed
  • Forschungszentrum Jülich. (2018b). Corridor experiment. Retrieved from http://ped.fz-juelich.de/da/2009bottleneck
  • Forschungszentrum Jülich. (2018c). Dataset of experimental pedestrian trajectories. Retrieved from http://ped.fz-juelich.de/database
  • Forschungszentrum Jülich. (2018d). Dokumentation von Versuchen zur Personenstromdynamik – Projekt “HERMES”. Retrieved from http://ped.fz-juelich.de/experiments/2009.05.12_Duesseldorf_Messe_Hermes/docu/VersuchsdokumentationHERMES.pdf
  • Fragkiadaki, K., Levine, S., Felsen, P., & Malik, J. (2015). Recurrent network models for human dynamics. Paper presented at the IEEE ICCV Conference (pp. 4346–4354), Santiago, Chile.
  • Fritsch, S., Guenther, F., & Suling, M. (2012). Neuralnet: Training of neural networks [Computer software manual]. Retrieved from http://CRAN.R-project.org/package=neuralnet
  • Greenberg, H. (1959). An analysis of traffic flow. Operations Research, 7(1), 79–85. doi:10.1287/opre.7.1.79
  • Greenshields, B. (1935). A study of traffic capacity. Paper presented at the Highway Research Board Proceedings (Vol. 14, pp. 448–477), Washington, DC.
  • Guo, R., Wong, S., Huang, H., Zhang, P., & Lam, W. (2010). A microscopic pedestrian-simulation model and its application to intersecting flows. Physica A, 389(3), 515–526. doi:10.1016/j.physa.2009.10.008
  • Helbing, D., Buzna, L., Johansson, A., & Werner, T. (2005). Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transportation Science, 39(1), 1–24. doi:10.1287/trsc.1040.0108
  • Helbing, D., & Molnár, P. (1995). Social force model for pedestrian dynamics. Physical Review E, 51(5), 4282–4286.
  • Holl, S., Schadschneider, A., & Seyfried, A. (2014). Hermes: An evacuation assistant for large arenas. In U. Weidmann, U. Kirsch, & M. Schreckenberg (Eds.), Pedestrian and evacuation dynamics 2012 (pp. 345–349). Cham: Springer International Publishing.
  • Jackel, L., Hackett, D., Krotkov, E., Perschbacher, M., Pippine, J., & Sullivan, C. (2007). How DARPA structures its robotics programs to improve locomotion and navigation. Communications of the ACM, 50(11), 55–59. doi:10.1145/1297797.1297823
  • Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In C. S. Mellish (Ed.), Proceedings of the 14th international joint conference on artificial intelligence (Vol. 2, pp. 1137–1143). San Francisco, CA: Morgan Kaufmann Publishers Inc.
  • Li, Y., Khoshelham, K., Sarvi, M., & Haghani, M. (2019). Direct generation of level of service maps from images using convolutional and long short-term memory networks. Journal of Intelligent Transportation Systems, 23(3), 300–308. doi:10.1080/15472450.2018.1563865
  • Liao, W., Seyfried, A., Zhang, J., Boltes, M., Zheng, X., & Zhao, Y. (2014). Experimental study on pedestrian flow through wide bottleneck. Transportation Research Procedia, 2, 26–33. doi:10.1016/j.trpro.2014.09.005
  • Lv, W., Song, W.-g., Ma, J., & Fang, Z.-m. (2013). A two-dimensional optimal velocity model for unidirectional pedestrian flow based on pedestrian’s visual hindrance field. IEEE Transactions on Intelligent Transportation Systems, 14(4), 1753–1763. doi:10.1109/TITS.2013.2266340
  • Ma, Y., Lee, E. W. M., & Yuen, R. K. K. (2016). An artificial intelligence-based approach for simulating pedestrian movement. IEEE Transactions on Intelligent Transportation Systems, 17(11), 3159–3170. doi:10.1109/TITS.2016.2542843
  • Mooney, C., & Duval, R. (1993). Bootstrapping: A nonparametric approach to statistical inference. Thousand Oaks, CA: SAGE Publications.
  • Moussaïd, M., Guillot, E., Moreau, M., Fehrenbach, J., Chabiron, O., Lemercier, S., … Theraulaz, G. (2012). Traffic instabilities in self-organized pedestrian crowds. PLoS Computational Biology, 8(3), 1–10.
  • Nakayama, A., Hasebe, K., & Sugiyama, Y. (2005). Instability of pedestrian flow and phase structure in a two-dimensional optimal velocity model. Physical Review E, 71, 036121.
  • Parisi, D., & Patterson, G. (2017). Influence of bottleneck lengths and position on simulated pedestrian egress. Papers in Physics, 9, 090001.
  • Predtechenskii, V. M., & Milinskii, A. I. (1978). Planning for foot traffic flow in buildings. New-Dehli, India: Amerind.
  • R Core Team. (2014). R: A language and environment for statistical computing [Computer software manual]. Retrieved from http://www.R-project.org/
  • Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning representations by back-propagating errors. Nature, 323, 533–536. doi:10.1038/323533a0
  • Sadati, N., & Taheri, J. (2002). Solving robot motion planning problem using Hopfield neural network in a fuzzified environment. Paper presented at the IEEE FS Conference (Vol. 2, pp. 1144–1149), Honolulu, HI.
  • Schadschneider, A., Chraibi, M., Seyfried, A., Tordeux, A., & Zhan, J. (2018). Pedestrian dynamics - From empirical results to modeling. In L. Gibelli & N. Bellomo (Eds.), Crowd dynamics, volume 1. Modeling and simulation in science, engineering and technology. Cham: Birkhäuser.
  • Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., & Seyfried, A. (2009). Evacuation dynamics: Empirical results, modeling and applications. In R. A. Meyers (Ed.), Encyclopedia of complexity and systems science (pp. 3142–3176). New York, NY: Springer.
  • Seyfried, A., Passon, O., Steffen, B., Boltes, M., Rupprecht, T., & Klingsch, W. (2009). New insights into pedestrian flow through bottlenecks. Transportation Science, 43(3), 395–406. doi:10.1287/trsc.1090.0263
  • Shladover, S. E. (2018). Connected and automated vehicle systems: Introduction and overview. Journal of Intelligent Transportation Systems, 22(3), 190–200. doi:10.1080/15472450.2017.1336053
  • Tordeux, A., Chraibi, M., Seyfried, A., & Schadschneider, A. (2017). Data from: Prediction of pedestrian speed with artificial neural networks. Retrieved from https://doi.org/10.5281/zenodo.1054017
  • Treiber, M., & Kesting, A. (2013). Traffic flow dynamics. Berlin: Springer.
  • Weidmann, U. (1994). Transporttechnik der Fußgänger (Technical Report). ETH Zürich: Schriftenreihe des IVT Nr. 90.
  • Zhang, J. (2012). Pedestrian fundamental diagrams: Comparative analysis of experiments in different geometries (Doctoral dissertation), Universität Wuppertal, Wuppertal. Retrieved from http://juser.fz-juelich.de/record/128157
  • Zhang, J., & Seyfried, A. (2014). Experimental studies of pedestrian flows under different boundary conditions. Paper presented at the ITSC IEEE Conference (pp. 542–547), Qingdao, China.
  • Zhang, Y., Xin, D.-R., & Wu, Y.-H. (2016). Pedestrian detection for traffic safety based on accumulate binary haar features and improved deep belief network algorithm. Transportation Planning and Technology, 39(8), 791–800.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.