300
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

A Novel Infrared Image Enhancement Based on Correlation Measurement of Visible Image for Urban Traffic Surveillance Systems

, , , ORCID Icon, &
Pages 290-303 | Received 30 Oct 2018, Accepted 09 Jul 2019, Published online: 01 Aug 2019

References

  • Bai, X., Zhou, F., & Xue, B. (2011). Infrared image enhancement through contrast enhancement by using multiscale new top-hat transform. Infrared Physics & Technology, 54(2), 61–69. doi: 10.1016/j.infrared.2010.12.001
  • Bastani, K., Kong, Z., Huang, W., & Zhou, Y. (2016). Compressive sensing–based optimal sensor placement and fault diagnosis for multi-station assembly processes. IIE Transactions, 48(5), 462–474. doi: 10.1080/0740817X.2015.1096431
  • Benabdelkader, C., Cutler, R., Nanda, H., & Davis, L. S. (2001). Eigengait: Motion-based recognition of people using image self-similarity. In International conference on audio- and video-based biometric person authentication (pp. 284-294).
  • Buades, A., Coll, B., & Morel, J. M. (2005). A non-local algorithm for image denoising. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005. (Vol. 2, pp. 60–65).
  • Camplani, M., Mantecon, T., & Salgado, L. (2013). Depth-color fusion strategy for 3-d scene modeling with kinect. IEEE Transactions on Cybernetics, 43(6), 1560. doi: 10.1109/TCYB.2013.2271112
  • Cong, D. N. T., Khoudour, L., Achard, C., & Bruyelle, J. L. (2011). Intelligent distributed surveillance system for people reidentification in a transportation environment. Journal of Intelligent Transportation Systems, 15(3), 133–146. doi: 10.1080/15472450.2011.594672
  • Deselaers, T., & Ferrari, V. (2010). Global and efficient self-similarity for object classification and detection. In Computer Vision and Pattern Recognition (pp. 1633–1640).
  • Einshoka, A. A., Kelash, H. M., Faragallah, O. S., & Elsayed, H. S. (2014). Enhancement of IR images using homomorphic filtering in fast discrete curvelet transform (FDCT). International Journal of Computer Applications, 96(8), 22–25. doi: 10.5120/16816-6568
  • Elad, M. (2005). Retinex by two bilateral filters. Lecture Notes in Computer Science, 3459, 217–229.
  • Elmore, K. L., & Richman, M. B. (2001). Euclidean distance as a similarity metric for principal component analysis. Monthly Weather Review, 129(3), 540–549. doi: 10.1175/1520-0493(2001)129<0540:EDAASM>2.0.CO;2
  • Fan, Z., Bi, D., Xiong, L., Ma, S., He, L., & Ding, W. (2018). Dim infrared image enhancement based on convolutional neural network. Neurocomputing, 272, 396–404. doi: 10.1016/j.neucom.2017.07.017
  • Feng, D., Wenkang, S., Liangzhou, C., Yong, D., & Zhenfu, Z. (2005). Infrared image segmentation with 2-D maximum entropy method based on particle swarm optimization (PSO). Pattern Recognition Letters, 26(5), 597–603. doi: 10.1016/j.patrec.2004.11.002
  • Guan, R., & Wan, Y. (2016). An improved unsharp masking sharpening algorithm for image enhancement. In Eighth International Conference on Digital Image Processing (p. 100332A).
  • He, K., Sun, J., & Tang, X. (2010). Guided image filtering. Berlin, Heidelberg: Springer.
  • Jobson, D. J., Rahman, Z., & Woodell, G. A. (1997). A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Transactions on Image Processing, 6(7), 965–976.
  • Joro, R., Lääperi, A.-L., Soimakallio, S., Järvenpää, R., Kuukasjärvi, T., & Toivonen, T. (2008). Dynamic infrared imaging in identification of breast cancer tissue with combined image processing and frequency analysis. Journal of Medical Engineering & Technology, 32(4), 325–335. doi: 10.1080/03091900701541240
  • Kimmel, R., Elad, M., Shaked, D., Keshet, R., & Sobel, I. (2003). A variational framework for retinex. International Journal of Computer Vision, 52(1), 7–23. doi: 10.1023/A:1022314423998
  • Land, E. H. (1977). The retinex theory of color vision. Scientific American, 237(6), 108
  • Land, E. H., & Mccann, J. J. (1971). Lightness and retinex theory. Journal of the Optical Society of America, 61(1), 1–11.
  • Li, J., & Lu, B. L. (2009). An adaptive image Euclidean distance. Pattern Recognition, 42(3), 349–357. doi: 10.1016/j.patcog.2008.07.017
  • Liang, K., Ma, Y., Xie, Y., Zhou, B., & Wang, R. (2012). A new adaptive contrast enhancement algorithm for infrared images based on double plateaus histogram equalization. Infrared Physics & Technology, 55(4), 309–315. doi: 10.1016/j.infrared.2012.03.004
  • Lowe, D. G. (1999). Object recognition from local scale-invariant features. In IEEE International Conference on Computer Vision (p. 1150).
  • Lu, Z., Tang, Z., Zhou, L., Yang, H., & Lin, L. (2012). Recursive plateau histogram equalization for the contrast enhancement of the infrared images. In International Conference on Computer and Electrical Engineering.
  • Ming, G. U., Zheng, L., & Liu, Z. (2016). Infrared traffic image’s enhancement algorithm combining dark channel prior and gamma correction. Modern Physics Letters B, 31(19–21), 1740044. doi: 10.1142/S0217984917400449
  • Ni, C., Li, Q., & Xia, L. Z. (2008). A novel method of infrared image denoising and edge enhancement. Signal Processing, 88(6), 1606–1614. doi: 10.1016/j.sigpro.2007.12.016
  • Noda, M., Zhu, H., Xu, H., Mukaigawa, T., Hashimoto, K., Kiyomoto, T., … Okuyama, M. (2001). A new dielectric bolometer mode of detector pixel for uncooled infrared image sensor with ferroelectric BST thin film prepared by metal-organic decomposition. Integrated Ferroelectrics, 35(1–4), 31–39. doi: 10.1080/10584580108016884
  • Rahman, Z., Jobson, D. J., & Woodell, G. A. (2002). Multi-scale retinex for color image enhancement. In Proceedings on International Conference on Image Processing, 1996. (Vol. 3, pp. 1003–1006).
  • Rahman, Z. U., Jobson, D. J., & Woodell, G. A. (2004). Retinex processing for automatic image enhancement. In Human Vision and Electronic Imaging (Vol. VII, pp. 100–110). doi: 10.1117/1.1636183
  • Ran, B., Jin, P. J., Boyce, D., Qiu, T. Z., & Cheng, Y. (2012). Perspectives on future transportation research: Impact of intelligent transportation system technologies on next-generation transportation modeling. Journal of Intelligent Transportation Systems, 16(4), 226–242. doi: 10.1080/15472450.2012.710158
  • Ring, E. (2010). Beyond human vision: The development and applications of infrared thermal imaging. The Imaging Science Journal, 58(5), 254–260. doi: 10.1179/174313110X12771950995671
  • Salmon, J. (2010). On two parameters for denoising with non-local means. IEEE Signal Processing Letters, 17(3), 269–272. doi: 10.1109/LSP.2009.2038954
  • Shechtman, E., & Irani, M. (2008). Method and apparatus for matching local self-similarities. US.
  • Shen, X., Zhou, C., Xu, L., & Jia, J. (2015). Mutual-structure for joint filtering. In IEEE International Conference on Computer Vision (pp. 3406–3414).
  • Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.
  • Song, Y. F., Shao, X. P., & Jun, X. U. (2008). New enhancement algorithm for infrared image based on double plateaus histogram. Infrared & Laser Engineering, 37(2), 308–311.
  • Stark, J. A. (2002). Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Transactions on Image Processing, 9(5), 889–896. doi: 10.1109/83.841534
  • Tai, J. C., Tseng, S. T., Lin, C. P., & Song, K. T. (2004). Real-time image tracking for automatic traffic monitoring and enforcement applications. Image & Vision Computing, 22(6), 485–501. doi: 10.1016/j.imavis.2003.12.001
  • Tao, F., Yang, X., Wu, W., Liu, K., Zhou, Z., & Liu, Y. (2017). Retinex-based image enhancement framework by using region covariance filter. Soft Computing, 22(4), 1–22. doi: 10.1007/s00500-017-2813-2
  • Wan, M., Gu, G., Qian, W., Ren, K., Chen, Q., & Maldague, X. (2018). Particle swarm optimization-based local entropy weighted histogram equalization for infrared image enhancement. Infrared Physics & Technology, 91, 164–181. doi: 10.1016/j.infrared.2018.04.003
  • Wang, B., Chen, L., & Liu, Y. (2019). New results on contrast enhancement for infrared images. Optik, 178, 1264–1269. doi: 10.1016/j.ijleo.2018.09.165
  • Wu, W., Yang, X., Li, H., Liu, K., Jian, L., & Zhou, Z. (2017). A novel scheme for infrared image enhancement by using weighted least squares filter and fuzzy plateau histogram equalization. Multimedia Tools & Applications, 76(54), 1–29.
  • Xia, Z., Wang, X., Zhang, L., Qin, Z., Sun, X., & Ren, K. (2016). A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Transactions on Information Forensics and Security, 11(11), 2594–2608. doi: 10.1109/TIFS.2016.2590944
  • Xu, M., An, K., Vu, L. H., Ye, Z., Feng, J., & Chen, E. (2019). Optimizing multi-agent based urban traffic signal control system. Journal of Intelligent Transportation Systems, 23(4), 357–369. doi: 10.1080/15472450.2018.1501273
  • Zhang, W. G., & Zhang, Q. (2011). Sar image despeckling combining target detection with improved nonlocal means. Electronics Letters, 47(12), 724–725. doi: 10.1049/el.2010.3474
  • Zhang, X. L., Xiong-Fei, L. I., & Jun, L. I. (2014). Validation and correlation analysis of metrics for evaluating performance of image fusion. Acta Automatica Sinica, 40(2), 306–315.
  • Zhong, H., Yang, C., & Zhang, X. (2012). A new weight for nonlocal means denoising using method noise. IEEE Signal Processing Letters, 19(8), 535–538. doi: 10.1109/LSP.2012.2205566

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.