358
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Prediction of moving bottleneck through the use of probe vehicles: a simulation approach in the framework of three-phase traffic theory

ORCID Icon, , &
Pages 598-616 | Received 16 Aug 2018, Accepted 28 Jul 2019, Published online: 13 Sep 2019

References

  • Ahsani, V., Amin-Naseri, M., Knickerbocker, S., & Sharma, A. (2019). Quantitative analysis of probe data characteristics: Coverage, speed bias and congestion detection precision. Journal of Intelligent Transportation Systems, 23(2), 103–119. doi:10.1080/15472450.2018.1502667
  • Daganzo, C. F., & Laval, J. A. (2003). On the numerical treatment of moving bottlenecks (Report UCB-ITS-RR-93-7). Retrieved from https://escholarship.org/uc/item/69r4t5pp
  • Daganzo, C. F., & Laval, J. A. (2005). Moving bottlenecks: A numerical method that converges in flows. Transportation Research Part B: Methodological, 39(9), 855–863. doi:10.1016/j.trb.2004.10.004
  • Draper, N. R., & Smith, H. (1998). Applied regression analysis. Hoboken, NJ: John Wiley & Sons, Inc.
  • Dülgar, Y., Molzahn, S. E., Rehborn, H., Koller, M., Kerner, B. S., Wegerle, D., … Klenov, S. L. (2019). Empirical random phase transitions between free flow and synchronized flow at highway bottlenecks. Journal of Intelligent Transportation Systems, 1297(6), 1–17. doi:10.1080/15472450.2019.1615488
  • Elefteriadou, L. (2014). An introduction to traffic flow theory. New York, NY: Springer. doi:10.1007/978-1-4614-8435-6
  • Fadhloun, K., Rakha, H., & Loulizi, A. (2014a). Comprehensive framework for estimating traffic stream flow rates past moving bottlenecks. Transportation Research Record: Journal of the Transportation Research Board, 2422(1), 61–70. doi:10.3141/2422-07
  • Fadhloun, K., Rakha, H., & Loulizi, A. (2014b). Impact of underlying steady-state fundamental diagram on moving bottleneck passing rates using a second-order traffic model. Transportation Letters, 6(4), 185–196. doi:10.1179/1942787514Y.0000000024
  • Fadhloun, K., Rakha, H., & Loulizi, A. (2016). Analysis of moving bottlenecks considering a triangular fundamental diagram. International Journal of Transportation Science and Technology, 5(3), 186–199. doi:10.1016/j.ijtst.2017.01.003
  • Fadhloun, K., Rakha, H., & Loulizi, A. (2017). Macroscopic analysis of moving bottlenecks. Transportation Letters, 36(9), 1–11. doi:10.1080/19427867.2017.1407506
  • Gazis, D. C., & Herman, R. (1990). The moving and ‘phantom’ bottlenecks. San Jose, CA: IBM Thomas J. Watson Research Division.
  • Helbing, D. (2001). Traffic and related self-driven many particle systems. Reviews of Modern Physics, 73(4), 1067–1141. doi:10.1103/RevModPhys.73.1067
  • Ke, R., Zeng, Z., Pu, Z., & Wang, Y. (2018). New framework for automatic identification and quantification of freeway bottlenecks based on wavelet analysis. Journal of Transportation Engineering, Part A: Systems, 144(9), 4018044. doi:10.1061/JTEPBS.0000168
  • Kerner, B. S. (1998a). Experimental features of self-organization in traffic flow. Physical Review Letters, 81(17), 3797–3800. doi:10.1103/PhysRevLett.81.3797
  • Kerner, B. S. (1998b). A theory of congested traffic flow. In R. Rysgaard (Ed.), Proceedings of the third international symposium on highway capacity: Copenhagen, Denmark, June, 1998 (Vol. 2, pp. 621–642). Copenhagen: Road Directorate.
  • Kerner, B. S. (1999a). Congested traffic flow: Observations and theory. Transportation Research Record: Journal of the Transportation Research Board, 1678(1), 160–167. doi:10.3141/1678-20
  • Kerner, B. S. (1999b). Theory of congested traffic flow: Self-organization without bottlenecks. In A. Ceder (Ed,), Transportation and traffic theory: 14th international symposium on transportation and traffic theory (pp. 147–171). London: Elsevier Science.
  • Kerner, B. S. (1999c). The physics of traffic. Physics World, 12(8), 25–30. doi:10.1088/2058-7058/12/8/30
  • Kerner, B. S. (2000a). Experimental features of the emergence of moving jams in free traffic flow. Journal of Physics A: Mathematical and General, 33(26), L221–L228. doi:10.1088/0305-4470/33/26/101
  • Kerner, B. S. (2000b). Theory of breakdown phenomenon at highway bottlenecks. Transportation Research Record: Journal of the Transportation Research Board, 1710(1), 136–144. doi:10.3141/1710-16
  • Kerner, B. S. (2004). The physics of traffic: Empirical freeway pattern features, engineering applications, and theory. Understanding complex systems. Berlin: Springer. doi:10.1007/978-3-540-40986-1
  • Kerner, B. S. (2009). Introduction to modern traffic flow theory and control: The long road to three-phase traffic theory. Berlin: Springer-Verlag. doi:10.1007/978-3-642-02605-8
  • Kerner, B. S. (2015). Microscopic theory of traffic-flow instability governing traffic breakdown at highway bottlenecks: Growing wave of increase in speed in synchronized flow. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 92(6), 62827. doi:10.1103/PhysRevE.92.062827
  • Kerner, B. S. (2017). Breakdown in traffic networks: Fundamentals of transportation science. Berlin, Heidelberg: Springer. doi:10.1007/978-3-662-54473-0
  • Kerner, B. S. (2018a). Traffic breakdown, modeling approaches to. In R. A. Meyers (Ed.), Encyclopedia of complexity and systems science (Vol. 60, pp. 1–89). Berlin: Springer.
  • Kerner, B. S. (2018b). Traffic congestion, spatiotemporal features of. In R. A. Meyers (Ed.), Encyclopedia of complexity and systems science (pp. 1–116). Berlin: Springer.
  • Kerner, B. S. (Ed.). (2019). Complex dynamics of traffic management. Encyclopedia of complexity and systems science series (2nd ed.). New York, NY: Springer. doi:10.1007/978-3-642-27737-5_78-3
  • Kerner, B. S., & Klenov, S. L. (2002). A microscopic model for phase transitions in traffic flow. Journal of Physics A: Mathematical and General, 35(3), L31–L43. doi:10.1088/0305-4470/35/3/102
  • Kerner, B. S., & Klenov, S. L. (2003). Microscopic theory of spatial-temporal congested traffic patterns at highway bottlenecks. Physical Review E, 68(3), 36130. doi:10.1103/PhysRevE.68.036130
  • Kerner, B. S., & Klenov, S. L. (2009). Phase transitions in traffic flow on multilane roads. Physical Review E, 80(5), 056101. doi:10.1103/PhysRevE.80.056101
  • Kerner, B. S., & Klenov, S. L. (2010). A theory of traffic congestion at moving bottlenecks. Journal of Physics A: Mathematical and Theoretical, 43(42), 425101. doi:10.1088/1751-8113/43/42/425101
  • Kerner, B. S., Klenov, S. L., & Hiller, A. (2006). Criterion for traffic phases in single vehicle data and empirical test of a microscopic three-phase traffic theory. Journal of Physics A: Mathematical and General, 39(9), 2001–2020. doi:10.1088/0305-4470/39/9/002
  • Kerner, B. S., Klenov, S. L., & Hiller, A. (2007). Empirical test of a microscopic three-phase traffic theory. Nonlinear Dynamics, 49(4), 525–553. doi:10.1007/s11071-006-9113-1
  • Kerner, B. S., Klenov, S. L., Hiller, A., & Rehborn, H. (2006). Microscopic features of moving traffic jams. Physical Review E, 73(4), 046107. doi:10.1103/PhysRevE.73.046107
  • Kerner, B. S., Rehborn, H., Schäfer, R. P., Klenov, S. L., Palmer, J., Lorkowski, S., & Witte, N. (2013). Traffic dynamics in empirical probe vehicle data studied with three-phase theory: Spatiotemporal reconstruction of traffic phases and generation of jam warning messages. Physica A: Statistical Mechanics and Its Applications, 392(1), 221–251. doi:10.1016/j.physa.2012.07.070
  • Lebacque, J., Lesort, J., & Giorgi, F. (1998). Introducing buses into first-order macroscopic traffic flow models. Transportation Research Record: Journal of the Transportation Research Board, 1644(1), 70–79. doi:10.3141/1644-08
  • Leclercq, L., Chanut, S., & Lesort, J.‑B. (2004). Moving bottlenecks in Lighthill-Whitham-Richards model: A unified theory. Transportation Research Record: Journal of the Transportation Research Board, 1883(1), 3–13. doi:10.3141/1883-01
  • Molzahn, S.-E., Kerner, B. S., Rehborn, H., Klenov, S. L., & Koller, M. (2017). Analysis of speed disturbances in empirical single vehicle probe data before traffic breakdown. IET Intelligent Transport Systems, 11(9), 604–612. doi:10.1049/iet-its.2016.0315
  • Muñoz, J., & Daganzo, C. (2002). Moving bottlenecks: A theory grounded on experimental observation. In Taylor, M. (Ed.) Transportation and traffic theory in the 21st century (pp. 441–461). London: Elsevier. doi:10.1108/9780585474601-022
  • Newell, G. F. (1993). A moving bottleneck (Technical Report UCB-ITS-RR-93-3). Berkeley, CA: Institute of Transportation Studies, University of California, Berkeley.
  • Newell, G. F. (1998). A moving bottleneck. Transportation Research Part B: Methodological, 32(8), 531–537. doi:10.1016/S0191-2615(98)00007-1
  • Thonhofer, E., & Jakubek, S. (2018). Investigation of stochastic variation of parameters for a macroscopic traffic model. Journal of Intelligent Transportation Systems, 22(6), 547–564. doi:10.1080/15472450.2018.1444485
  • Thonhofer, E., Luchini, E., & Jakubek, S. (2019). A flexible, adaptive traffic network simulation with parameter estimation. Journal of Intelligent Transportation Systems, 23(4), 63–77. doi:10.1080/15472450.2016.1208568
  • Treiber, M., & Kesting, A. (2013). Traffic flow dynamics. Berlin: Springer.
  • Yue, W., Li, C., & Mao, G. (2018). Urban traffic bottleneck identification based on congestion propagation. Paper presented at the 2018 IEEE International Conference on Communications (ICC), IEEE, Kansas City, MO (pp. 1–6).
  • Zhang, JB., Song, GH., Yu, L., Guo, JF., & Lu, HY. (2018). Identification and characteristics analysis of bottlenecks on urban expressways based on floating car data. Journal of Central South University, 25(8), 2014–2024. doi:10.1007/s11771-018-3891-8
  • Zheng, Z., Ahn, S., Chen, D., & Laval, J. (2011). Applications of wavelet transform for analysis of freeway traffic: Bottlenecks, transient traffic, and traffic oscillations. Transportation Research Part B: Methodological, 45(2), 372–384. doi:10.1016/j.trb.2010.08.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.