Publication Cover
Journal of Intelligent Transportation Systems
Technology, Planning, and Operations
Volume 25, 2021 - Issue 4
2,101
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Bus rescheduling in rolling horizons for regularity-based services

ORCID Icon
Pages 356-375 | Received 08 Jul 2018, Accepted 15 Oct 2019, Published online: 29 Oct 2019

References

  • Aboudolas, K., Papageorgiou, M., Kouvelas, A., & Kosmatopoulos, E. (2010). A rolling-horizon quadratic-programming approach to the signal control problem in large-scale congested urban road networks. Transportation Research Part C: Emerging Technologies, 18(5), 680–694. doi:10.1016/j.trc.2009.06.003
  • Bartholdi, J. J., & Eisenstein, D. D. (2012). A self-coördinating bus route to resist bus bunching. Transportation Research Part B: Methodological, 46(4), 481–491. doi:10.1016/j.trb.2011.11.001
  • Berrebi, S. J., Hans, E., Chiabaut, N., Laval, J. A., Leclercq, L., & Watkins, K. E. (2018). Comparing bus holding methods with and without real-time predictions. Transportation Research Part C: Emerging Technologies, 87, 197–211. doi:10.1016/j.trc.2017.07.012
  • Bertsekas, D. P. (1990). Nonlinear programming (2nd ed.). Belmont, MA: Athena Scientific.
  • Bin, Y., Zhongzhen, Y., & Baozhen, Y. (2006). Bus arrival time prediction using support vector machines. Journal of Intelligent Transportation Systems, 10(4), 151–158. doi:10.1080/15472450600981009
  • Calabrese, F., Di Lorenzo, G., Liu, L., & Ratti, C. (2011). Estimating origin-destination flows using opportunistically collected mobile phone location data from one million users in Boston Metropolitan Area. IEEE Pervasive Computing, 10(4), 36–44. doi:10.1109/MPRV.2011.41
  • Cats, O., Larijani, A., Koutsopoulos, H., & Burghout, W. (2011). Impacts of holding control strategies on transit performance: Bus simulation model analysis. Transportation Research Record: Journal of the Transportation Research Board, 2216(1), 51–58. doi:10.3141/2216-06
  • Cats, O., Larijani, A., Ólafsdóttir, Á., Burghout, W., Andreasson, I., & Koutsopoulos, H. (2012). Bus-holding control strategies: Simulation-based evaluation and guidelines for implementation. Transportation Research Record: Journal of the Transportation Research Board, 2274(1), 100–108. doi:10.3141/2274-11
  • Cats, O., & Loutos, G. (2016). Real-time bus arrival information system: An empirical evaluation. Journal of Intelligent Transportation Systems, 20(2), 138–151. doi:10.1080/15472450.2015.1011638
  • Ceder, A. (2007). “Public Transit Planning and Operation: Theory.” Modeling and practice. Oxford: Elsevier.
  • Chang, H., Park, D., Lee, S., Lee, H., & Baek, S. (2010). Dynamic multi-interval bus travel time prediction using bus transit data. Transportmetrica, 6(1), 19–38. doi:10.1080/18128600902929591
  • Chen, Q., Adida, E., & Lin, J. (2013). Implementation of an iterative headway-based bus holding strategy with real-time information. Public Transport, 4(3), 165–186. doi:10.1007/s12469-012-0057-1
  • Chen, M., Liu, X., Xia, J., & Chien, S. I. (2004). A dynamic bus-arrival time prediction model based on APC data. Computer-Aided Civil and Infrastructure Engineering, 19(5), 364–376. doi:10.1111/j.1467-8667.2004.00363.x
  • Chien, S. I.-J., Ding, Y., & Wei, C. (2002). Dynamic bus arrival time prediction with artificial neural networks. Journal of Transportation Engineering, 128(5), 429–438. doi:10.1061/(ASCE)0733-947X(2002)128:5(429)
  • Chien, S. I.-J., & Kuchipudi, C. M. (2003). Dynamic travel time prediction with real-time and historic data. Journal of Transportation Engineering, 129(6), 608–616. doi:10.1061/(ASCE)0733-947X(2003)129:6(608)
  • Cipriani, E., Gori, S., & Petrelli, M. (2012). Transit network design: A procedure and an application to a large urban area. Transportation Research Part C: Emerging Technologies, 20(1), 3–14. doi:10.1016/j.trc.2010.09.003
  • Cortés, C. E., Sáez, D., Milla, F., Núñez, A., & Riquelme, M. (2010). Hybrid predictive control for real-time optimization of public transport systems’ operations based on evolutionary multi-objective optimization. Transportation Research Part C: Emerging Technologies, 18(5), 757–769. doi:10.1016/j.trc.2009.05.016
  • Daganzo, C. F. (2009). A headway-based approach to eliminate bus bunching: Systematic analysis and comparisons. Transportation Research Part B: Methodological, 43(10), 913–921. doi:10.1016/j.trb.2009.04.002
  • Dai, Z., Ma, X., & Chen, X. (2019). Bus travel time modelling using GPS probe and smart card data: A probabilistic approach considering link travel time and station dwell time. Journal of Intelligent Transportation Systems, 23(2), 175–190. doi:10.1080/15472450.2018.1470932
  • Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Vol. 16. Chichester, UK: John Wiley & Sons.
  • Eberlein, X. J., Wilson, N. H., & Bernstein, D. (2001). The holding problem with real–time information available. Transportation Science, 35(1), 1–18. doi:10.1287/trsc.35.1.1.10143
  • Fan, W., & Machemehl, R. B. (2008). Tabu search strategies for the public transportation network optimizations with variable transit demand. Computer-Aided Civil and Infrastructure Engineering, 23(7), 502–520. doi:10.1111/j.1467-8667.2008.00556.x
  • Farahani, R. Z., Miandoabchi, E., Szeto, W. Y., & Rashidi, H. (2013). A review of urban transportation network design problems. European Journal of Operational Research, 229(2), 281–302. doi:10.1016/j.ejor.2013.01.001
  • Fiacco, A. V., & McCormick, G. P. (1968). Nonlinear programming: Sequential unconstrained minimization techniques. New York: John Wiley & Sons.
  • Fortin, F.-A., Rainville, F.-M. D., Gardner, M.-A., Parizeau, M., & Gagné, C. (2012). DEAP: Evolutionary algorithms made easy. Journal of Machine Learning Research, 13, 2171–2175.
  • Fu, L., & Yang, X. (2002). Design and implementation of bus-holding control strategies with real-time information. Transportation Research Record: Journal of the Transportation Research Board, 1791(1), 6–12. doi:10.3141/1791-02
  • Gkiotsalitis, K. (2019). Robust stop-skipping at the tactical planning stage with evolutionary optimization. Transportation Research Record: Journal of the Transportation Research Board, 2673(3), 611–623. doi:10.1177/0361198119834549
  • Gkiotsalitis, K., & Alesiani, F. (2019). Robust timetable optimization for bus lines subject to resource and regulatory constraints. Transportation Research Part E: Logistics and Transportation Review, 128, 30–51. doi:10.1016/j.tre.2019.05.016
  • Gkiotsalitis, K., & Cats, O. (2018). Reliable frequency determination: Incorporating information on service uncertainty when setting dispatching headways. Transportation Research Part C: Emerging Technologies, 88, 187–207. doi:10.1016/j.trc.2018.01.026
  • Gkiotsalitis, K., & Cats, O. (2019). Multi-constrained bus holding control in time windows with branch and bound and alternating minimization. Transportmetrica B: Transport Dynamics , 7(1), 1258–1285. doi:10.1080/21680566.2019.1606743
  • Gkiotsalitis, K., Eikenbroek, O. A. L., & Cats, O. (2019). Robust network-wide bus scheduling with transfer synchronizations. IEEE Transactions on Intelligent Transportation Systems, 1–11. doi:10.1109/TITS.2019.2941847
  • Gkiotsalitis, K., & Kumar, R. (2018). Bus operations scheduling subject to resource constraints using evolutionary optimization. Informatics, 5(1), 9. doi:10.3390/informatics5010009
  • Gkiotsalitis, K., & Maslekar, N. (2018). Multiconstrained timetable optimization and performance evaluation in the presence of travel time noise. Journal of Transportation Engineering, Part A: Systems, 144(9), 04018058. doi:10.1061/JTEPBS.0000181
  • Gkiotsalitis, K., & Maslekar, N. (2018). Towards transfer synchronization of regularity-based bus operations with sequential hill-climbing. Public Transport, 10(2), 335–361. doi:10.1007/s12469-018-0178-2
  • Gkiotsalitis, K., & Stathopoulos, A. (2015). A utility-maximization model for retrieving users’ willingness to travel for participating in activities from big-data. Transportation Research Part C: Emerging Technologies, 58, 265–277. doi:10.1016/j.trc.2014.12.006
  • Gkiotsalitis, K., Wu, Z., & Cats, O. (2019). A cost-minimization model for bus fleet allocation featuring the tactical generation of short-turning and interlining options. Transportation Research Part C: Emerging Technologies, 98, 14–36. doi:10.1016/j.trc.2018.11.007
  • Goldberg, D. E., & Deb, K. (1991). A comparative analysis of selection schemes used in genetic algorithms. In Foundations of genetic algorithms, Vol. 1, 69–93. SanMateo, CA: Elsevier.
  • Gurmu, Z., & Fan, W. (2014). Artificial neural network travel time prediction model for buses using only GPS data. Journal of Public Transportation, 17(2), 45. doi:10.5038/2375-0901.17.2.3
  • Hickman, M. D. (2001). An analytic stochastic model for the transit vehicle holding problem. Transportation Science, 35(3), 215–237. doi:10.1287/trsc.35.3.215.10150
  • Hounsell, N. B., Shrestha, B. P., & Wong, A. (2012). Data management and applications in a world-leading bus fleet. Transportation Research Part C: Emerging Technologies, 22, 76–87. doi:10.1016/j.trc.2011.12.005
  • Ibarra-Rojas, O. J., Delgado, F., Giesen, R., & Muñoz, J. C. (2015). Planning, operation, and control of bus transport systems: A literature review. Transportation Research Part B: Methodological, 77, 38–75. doi:10.1016/j.trb.2015.03.002
  • Jeong, R., & Rilett, R. (2004). Bus arrival time prediction using artificial neural network model. In Proceedings of the 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No. 04TH8749, pp. 988–993). Washington, WA: IEEE.
  • Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. In Proceedings of the sixteenth annual ACM symposium on Theory of computing, pp. 302–311. New York, NY: ACM.
  • Kepaptsoglou, K., & Karlaftis, M. (2009). Transit route network design problem: Review. Journal of Transportation Engineering, 135(8), 491–505. doi:10.1061/(ASCE)0733-947X(2009)135:8(491)
  • Koehler, L. A., Kraus, W., & Camponogara, E. (2011). Iterative quadratic optimization for the bus holding control problem. IEEE Transactions on Intelligent Transportation Systems, 12(4), 1568–1575. doi:10.1109/TITS.2011.2164909
  • Kumar, B. A., Vanajakshi, L., & Subramanian, S. C. (2018). A hybrid model based method for bus travel time estimation. Journal of Intelligent Transportation Systems, 22(5), 390–406. doi:10.1080/15472450.2017.1378102
  • Leong, W., Goh, K., Hess, S., & Murphy, P. (2016). Improving bus service reliability: The Singapore experience. Research in Transportation Economics, 59, 40–49. doi:10.1016/j.retrec.2016.07.025
  • Leontitsis, A., Bountis, T., & Pagge, J. (2004). An adaptive way for improving noise reduction using local geometric projection. Chaos: An Interdisciplinary Journal of Nonlinear Science, 14(1), 106–110. doi:10.1063/1.1622354
  • Mazloumi, E., Rose, G., Currie, G., & Sarvi, M. (2011). An integrated framework to predict bus travel time and its variability using traffic flow data. Journal of Intelligent Transportation Systems, 15(2), 75–90. doi:10.1080/15472450.2011.570109
  • Pangilinan, C., Wilson, N., & Moore, A. (2008). Bus supervision deployment strategies and use of real-time automatic vehicle location for improved bus service reliability. Transportation Research Record: Journal of the Transportation Research Board, 2063(1), 28–33. doi:10.3141/2063-04
  • Pelletier, M.-P., Trépanier, M., & Morency, C. (2011). Smart card data use in public transit: A literature review. Transportation Research Part C: Emerging Technologies, 19(4), 557–568. doi:10.1016/j.trc.2010.12.003
  • Randall, E. R., Condry, B. J., Trompet, M., & Campus, S. K. (2007). International bus system benchmarking: Performance measurement development, challenges, and lessons learned. In Transportation Research Board 86th Annual Meeting, 21st–25th January. Washington, DC.
  • Shalaby, A., & Farhan, A. (2004). Prediction model of bus arrival and departure times using AVL and APC data. Journal of Public Transportation, 7(1), 41. doi:10.5038/2375-0901.7.1.3
  • Shen, Y., Xu, J., & Zeng, Z. (2016). Public transit planning and scheduling based on AVL data in China. International Transactions in Operational Research, 23(6), 1089–1111. doi:10.1111/itor.12164
  • Smilowitz, K., Daganzo, C., Cassidy, M. J., & Bertini, R. L. (1999). Some observations of highway traffic in long queues. Transportation Research Record: Journal of the Transportation Research Board, 1678(1), 225–233. doi:10.3141/1678-27
  • TfL. (2017). “Transport for London: Bus Routes and Borough Reports.” Retrieved from https://www.tfl.gov.uk/forms/14144.aspx.
  • Transportation Research Group, University of Southampton. (1997). Bus Priority at Signals: AVL/BUS PRIORITY Headway Algorithm. Final Report to London Transport Buses, PRO 310. Technical Report. Transportation Research Group, University of Southampton.
  • Trompet, M., Liu, X., & Graham, D. (2011). Development of key performance indicator to compare regularity of service between urban bus operators. Transportation Research Record: Journal of the Transportation Research Board, 2216(1), 33–41. doi:10.3141/2216-04
  • van Hinsbergen, C. I., Van Lint, J. W. C., & Van Zuylen, H. J. (2009). Bayesian committee of neural networks to predict travel times with confidence intervals. Transportation Research Part C: Emerging Technologies, 17(5), 498–509. doi:10.1016/j.trc.2009.04.007
  • Van Lint, J. W. C., Hoogendoorn, S. P., & van Zuylen, H. J. (2005). Accurate freeway travel time prediction with state-space neural networks under missing data. Transportation Research Part C: Emerging Technologies, 13(5-6), 347–369. doi:10.1016/j.trc.2005.03.001
  • Van Oort, N., Wilson, N., & Van Nes, R. (2010). Reliability improvement in short headway transit services: Schedule-and headway-based holding strategies. Transportation Research Record: Journal of the Transportation Research Board, (2143(1), 67–76. doi:10.3141/2143-09
  • Vlahogianni, E. I., Karlaftis, M. G., & Golias, J. C. (2005). Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach. Transportation Research Part C: Emerging Technologies, 13(3), 211–234. doi:10.1016/j.trc.2005.04.007
  • Welding, P. I. (1957). The instability of a close-interval service. Journal of the Operational Research Society, 8(3), 133–142. doi:10.1057/jors.1957.21
  • Xuan, Y., Argote, J., & Daganzo, C. F. (2011). Dynamic bus holding strategies for schedule reliability: Optimal linear control and performance analysis. Transportation Research Part B: Methodological, 45(10), 1831–1845. doi:10.1016/j.trb.2011.07.009
  • Yan, Y., Liu, Z., Meng, Q., & Jiang, Y. (2013). Robust optimization model of bus transit network design with stochastic travel time. Journal of Transportation Engineering, 139(6), 625–634. doi:10.1061/(ASCE)TE.1943-5436.0000536
  • Yu, B., Lam, W. H., & Lam Tam, M. (2011). Bus arrival time prediction at bus stop with multiple routes. Transportation Research Part C: Emerging Technologies, 19(6), 1157–1170. doi:10.1016/j.trc.2011.01.003
  • Yu, B., Wang, H., Shan, W., & Yao, B. (2018). Prediction of bus travel time using random forests based on near neighbors. Computer-Aided Civil and Infrastructure Engineering, 33(4), 333–350. doi:10.1111/mice.12315
  • Yu, B., Yang, Z.-Z., Chen, K., & Yu, B. (2010). Hybrid model for prediction of bus arrival times at next station. Journal of Advanced Transportation, 44(3), 193–204. doi:10.1002/atr.136
  • Zaki, M., Ashour, I., Zorkany, M., & Hesham, B. (2013). Online bus arrival time prediction using hybrid neural network and Kalman filter techniques. International Journal of Modern Engineering Research, 3(4), 2035–2041.