365
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

A two-sided lateral gap continuum model and its numerical simulation for non-lane based heterogeneous traffic environment

ORCID Icon & ORCID Icon
Pages 635-653 | Received 17 Aug 2018, Accepted 24 May 2020, Published online: 10 Jun 2020

References

  • Aghabayk, K., Sarvi, M., & Young, W. (2015). A state-of-the-art review of car-following models with particular considerations of heavy vehicles. Transport Reviews, 35(1), 82–105. Doi: https://doi.org/10.1080/01441647.2014.997323
  • Aw, A., & Rascle, M. (2000). Resurrection of second order models of traffic flow. SIAM Journal on Applied Mathematics, 60(3), 916–938. Doi: https://doi.org/10.1137/S0036139997332099
  • Berg, P., Mason, A., & Woods, A. (2000). Continuum approach to car-following models. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 61(2), 1056–1066. Doi: https://doi.org/10.1103/physreve.61.1056
  • Chanut, S., & Buisson, C. (2003). Macroscopic model and its numerical solution for two-flow mixed traffic with different speeds and lengths. Transportation Research Record: Journal of the Transportation Research Board, 1852(1), 209–219. Doi: https://doi.org/10.3141/1852-26
  • Colombaroni, C., & Fusco, G. (2014). Artificial neural network models for car following: experimental analysis and calibration issues. Journal of Intelligent Transportation Systems, 18(1), 5–16. https://doi.org/10.1080/15472450.2013.801717
  • Daganzo, C. F. (1995). Requiem for second-order fluid approximations of traffic flow. Transportation Research Part B: Methodological, 29(4), 277–286. Doi: https://doi.org/10.1016/0191-2615(95)00007-Z
  • Das, S., & Maurya, A. K. (2020). Bivariate modeling of time headways in mixed traffic streams: a copula approach. Transportation Letters, 12(2), 138–111. https://doi.org/10.1080/19427867.2018.1537209
  • Das, S., & Maurya, A. K. (2020). Pore acceptance predictions of motorised Two-Wheelers during filtering at urban Mid-Block sections. Journal of Intelligent Transportation Systems, 1–13. https://doi.org/10.1080/15472450.2020.1735385
  • Del Castillo, J. M., Pintado, P., & Benitez, F. G. (1994). The reaction time of drivers and the stability of traffic flow. Transportation Research Part B: Methodological, 28(1), 35–60. DOI: https://doi.org/10.1016/0191-2615(94)90030-2
  • Gaddam, H. K., & Rao, K. R. (2019). Speed–density functional relationship for heterogeneous traffic data: a statistical and theoretical investigation. Journal of Modern Transportation, 27(1), 61–74. https://doi.org/10.1007/s40534-018-0177-7
  • Gunay, B. (2007). Car following theory with lateral discomfort. Transportation Research Part B: Methodological, 41(7), 722–735. Doi:https://doi.org/10.1016/j.trb.2007.02.002
  • Gupta, A. K., & Dhiman, I. (2014). Analyses of a continuum traffic flow model for a nonlane-based system. International Journal of Modern Physics C, 25(10), 1450045. doi: https://doi.org/10.1142/S0129183114500454
  • Gupta, A. K., & Katiyar, V. K. (2006). A new anisotropic continuum model for traffic flow. Physica A: Statistical Mechanics and Its Applications, 368(2), 551–559. Doi: https://doi.org/10.1016/j.physa.2005.12.036
  • Helbing, D. D., Hennecke, A., Shvetsov, V., & Treiber, M. (2001). MASTER: Macroscopic traffic simulation based on a gas-kinetic, non-local traffic model. Transportation Research Part B: Methodological, 35(2), 183–211. Doi: https://doi.org/10.1016/S0191-2615(99)00047-8
  • Herrmann, M., & Kerner, B. S. (1998). Local cluster effect in different traffic flow models. Physica A: Statistical Mechanics and Its Applications, 255(1–2), 163–188. Doi: https://doi.org/10.1016/S0378-4371(98)00102-2
  • Hoogendoorn, S. P., & Bovy, P. H. L. (2000). Continuum modeling of multiclass traffic flow. Transportation Research Part B: Methodological, 34(2), 123–146. Doi: https://doi.org/10.1016/S0191-2615(99)00017-X
  • Huang, H., Tang, T., & Gao, Z. (2006). Continuum modeling for two-lane traffic flow. Acta Mechanica Sinica, 22(2), 131–137. https://doi.org/10.1007/s10409-006-0101-y
  • Jiang, R., Wu, Q.-S., & Zhu, Z. J. (2002). A new continuum model for traffic flow and numerical tests. Transportation Research Part B: Methodological, 36(5), 405–419. Doi: https://doi.org/10.1016/S0191-2615(01)00010-8
  • Jin, S., Wang, D., Tao, P., & Li, P. (2010). Non-lane-based full velocity difference car following model. Physica A: Statistical Mechanics and Its Applications, 389(21), 4654–4662. Doi: https://doi.org/10.1016/j.physa.2010.06.014
  • Kerner, B. S., & Konhäuser, P. (1993). Cluster effect in initially homogeneous traffic flow. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 48(4), R2335–R2338. Doi: https://doi.org/10.1103/physreve.48.r2335
  • Kerner, B. S., & Konhäuser, P. (1994). Structure and parameters of clusters in traffic flow. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 50(1), 54–83. Doi: https://doi.org/10.1103/physreve.50.54
  • Kerner, B. S., Konhäuser, P., & Schilke, M. (1995). Deterministic spontaneous appearance of traffic jams in slightly inhomogeneous traffic flow. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 51(6), 6243–6246. Doi: https://doi.org/10.1103/physreve.51.6243
  • Kerner, B. S., & Rehborn, H. (1996). Experimental features and characteristics of traffic jams. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 53(2), R1297–R1300. Doi: https://doi.org/10.1103/physreve.53.r1297
  • Kühne, R. D., & Rödiger, M. B. (1991). Macroscopic simulation model for freeway traffic with jams and stop-start waves [Paper presentation]. Proceedings of the 23rd Conference on Winter Simulation(WSC ’91), Washington, DC, USA. IEEE Computer Society: 762–770. http://dl.acm.org/citation.cfm?id=304238.304347.
  • Lebacque, J. P., Mammar, S., & Haj-Salem, H. (2007). The Aw-Rascle and Zhang’s model: Vacuum problems, existence and regularity of the solutions of the Riemann problem. Transportation Research Part B: Methodological, 41(7), 710–721. Doi: https://doi.org/10.1016/j.trb.2006.11.005
  • Leo, C. J., & Pretty, R. L. (1992). Numerical simulation of macroscopic continuum traffic models. Transportation Research Part B: Methodological, 26(3), 207–220. Doi: https://doi.org/10.1016/0191-2615(92)90025-R
  • Li, Y., & Sun, D. (2012). Microscopic car-following model for the traffic flow: the state of the art. Journal of Control Theory and Applications, 10(2), 133–143. Doi: https://doi.org/10.1007/s11768-012-9221-z
  • Liu, M., & Shi, J. (2019). A cellular automata traffic flow model combined with a BP neural network based microscopic lane changing decision model. Journal of Intelligent Transportation Systems, 23(4), 309–318. https://doi.org/10.1080/15472450.2018.1462176
  • Li, Y., Zhang, L., Peeta, S., Pan, H., Zheng, T., Li, Y., & He, X. (2015). Non-lane-discipline-based car-following model considering the effects of two-sided lateral gaps. Nonlinear Dynamics, 80(1–2), 227–238. doi: https://doi.org/10.1007/s11071-014-1863-6
  • Lighthill, M. J., & Whitham, G. B. (1955a). On kinematic waves. I. Flood movement in long rivers [Paper presentation]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 229(1178), 281–316. https://doi.org/10.1098/rspa.1955.0088
  • Lighthill, M. J., & Whitham, G. B. (1955b). On kinematic waves. II. A theory of traffic flow on long crowded roads [Paper presentation]. Proceedings of the Royal Society London A, 229(1178), 317–345. https://doi.org/10.1098/rspa.1955.0089
  • Logghe, S., & Immers, L. (2003). Heterogeneous traffic flow modelling with the lwr-model using passenger-car equivalents [Paper presentation]. Proceedings of the 10th World Congress on ITS, 1–15.
  • Logghe, S., & Immers, L. H. (2008). Multi-class kinematic wave theory of traffic flow. Transportation Research Part B: Methodological, 42(6), 523–541. Doi: https://doi.org/10.1016/j.trb.2007.11.001
  • Michalopoulos, P. G., Beskos, D. E., & Yamauchi, Y. (1984). Multilane traffic flow dynamics: Some macroscopic considerations. Transportation Research Part B: Methodological, 18(4-5), 377–395. doi: https://doi.org/10.1016/0191-2615(84)90019-5
  • Mohan, R., & Ramadurai, G. (2017). Heterogeneous traffic flow modelling using second-order macroscopic continuum model. Physics Letters A, 381(3), 115–123. Doi: https://doi.org/10.1016/j.physleta.2016.10.042
  • Nair, R., Mahmassani, H. S., & Miller-Hooks, E. (2011). A porous flow approach to modeling heterogeneous traffic in disordered systems. Transportation Research Part B: Methodological, 45(9), 1331–1345. Doi: https://doi.org/10.1016/j.trb.2011.05.009
  • Ngoduy, D. (2011). Multiclass first-order traffic model using stochastic fundamental diagrams. Transportmetrica, 7(2), 111–125. Doi: https://doi.org/10.1080/18128600903251334
  • Ngoduy, D., & Liu, R. (2007). Multiclass first-order simulation model to explain non-linear traffic phenomena. Physica A: Statistical Mechanics and Its Applications, 385(2), 667–682. Doi: https://doi.org/10.1016/j.physa.2007.07.041
  • Payne, H.J. (1979). FREFLO: A macroscopic simulation model of freeway traffic. Transportation Research Record: Journal of the Transportation Research Board, 722, 68–77.
  • Richards, P. I. (1956). Shock waves on the highway. Operations Research, 4(1), 42–51. Doi: https://doi.org/10.1287/opre.4.1.42
  • Ross, P. (1988). Traffic dynamics. Transportation Research Part B: Methodological, 22(6), 421–435. Doi: https://doi.org/10.1016/0191-2615(88)90023-9
  • Tang, C. F., Wu, Q. S., Jiang, R., Wiwatanapataphee, B., & Wu, Y. H. (2007). January. Study of mixed traffic flow in anisotropic continuum model. In Transportation Research Board Annual Meeting, 86th, 2007, Washington, DC, USA.
  • Tang, T. Q., Huang, H. J., Zhao, S. G., & Shang, H. Y. (2009). A new dynamic model for heterogeneous traffic flow. Physics Letters A, 373(29), 2461–2466. Doi: https://doi.org/10.1016/j.physleta.2009.05.006
  • Thankappan, A., Vanajakshi, L., & Subramanian, S. C. (2014). Significance of incorporating heterogeneity in a non-continuum macroscopic model for density estimation. Transport, 29(2), 125–136. Doi: https://doi.org/10.3846/16484142.2014.928789
  • Wong, G. C. K., & Wong, S. C. (2002). A multi-class traffic flow model - An extension of LWR model with heterogeneous drivers. Transportation Research Part A: Policy and Practice, 36(9), 827–841. Doi: https://doi.org/10.1016/S0965-8564(01)00042-8.
  • Zhang, H. M. (1998). A theory of nonequilibrium traffic flow. Transportation Research Part B: Methodological, 32(7), 485–498. Doi: https://doi.org/10.1016/S0191-2615(98)00014-9
  • Zhang, H. M. (1999). Analyses of the stability and wave properties of a new continuum traffic theory. Transportation Research Part B: Methodological, 33(6), 399–415. Doi: https://doi.org/10.1016/S0191-2615(98)00044-7
  • Zhang, H. M. (2002). A non-equilibrium traffic model devoid of gas-like behavior. Transportation Research Part B: Methodological, 36(3), 275–290. Doi: https://doi.org/10.1016/S0191-2615(00)00050-3
  • Zhang, H. M. (2003). Driver memory, traffic viscosity and a viscous vehicular traffic flow model. Transportation Research Part B: Methodological, 37(1), 27–41. Doi: https://doi.org/10.1016/S0191-2615(01)00043-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.