Publication Cover
Journal of Intelligent Transportation Systems
Technology, Planning, and Operations
Volume 25, 2021 - Issue 5
585
Views
4
CrossRef citations to date
0
Altmetric
Innovations for Smart and Connected Traffic. Guest Editor. Professor Zhibin Li, Southeast University, China

A motion planner enabling cooperative lane changing: Reducing congestion under partially connected and automated environment

, &
Pages 469-481 | Received 13 Aug 2019, Accepted 03 Sep 2020, Published online: 24 Sep 2020

Reference

  • Ahn, K., Rakha, H., Trani, A., & Van Aerde, M. (2002). Estimating vehicle fuel consumption and emissions based on instantaneous speed and acceleration levels. Journal of Transportation Engineering, 128 (2), 182–190. https://doi.org/10.1061/(ASCE)0733-947X(2002)128:2(182)
  • Boccia, A., Grüne, L., & Worthmann, K. (2014). Stability and feasibility of state-constrained linear MPC without stabilizing terminal constraints [Conference Proceedings]. In Proceedings of International Symposium on Mathematical Theory of Networks and Systems: Systems & Control Letters 72 (pp. 14–21). Elsevier. https://doi.org/10.1016/j.sysconle.2014.08.002
  • Cao, P., Hu, Y., Miwa, T., Wakita, Y., Morikawa, T., & Liu, X. (2017). An optimal mandatory lane change decision model for autonomous vehicles in urban arterials. Journal of Intelligent Transportation Systems, 21 (4), 271–284. https://doi.org/10.1080/15472450.2017.1315805
  • Chen, D., & Ahn, S. (2018). Harnessing connected and automated vehicle technologies to control lane changes at freeway merge bottlenecks (Report).
  • Dang, R., Wang, J., Li, S. E., & Li, K. (2015). Coordinated adaptive cruise control system with lane-change assistance. IEEE Transactions on Intelligent Transportation Systems, 16 (5), 2373–2383. https://doi.org/10.1109/TITS.2015.2389527
  • Falcone, P., Borrelli, F., Asgari, J., Tseng, H. E., & Hrovat, D. (2007). A model predictive control approach for combined braking and steering in autonomous vehicles [Conference Proceedings] [Paper presentation].In Mediterranean Conference on Control & Automation (pp. 1–6). IEEE.
  • Falcone, P., Tseng, H. E., Asgari, J., Borrelli, F., & Hrovat, D. (2007). Integrated braking and steering model predictive control approach in autonomous vehicles. IFAC Proceedings Volumes, 40 (10), 273–278. https://doi.org/10.3182/20070820-3-US-2918.00038
  • Ghiasi, A., Hussain, O., Qian, Z. S., & Li, X. (2017). A mixed traffic capacity analysis and lane management model for connected automated vehicles: A Markov chain method. Transportation Research Part B: Methodological, 106, 266–292. [ https://doi.org/10.1016/j.trb.2017.09.022
  • Hatipoglu, C., Ozguner, U., & Redmill, K. A. (2003). Automated lane change controller design. IEEE Transactions on Intelligent Transportation Systems, 4 (1), 13–22. https://doi.org/10.1109/TITS.2003.811644
  • Hu, J., Kong, L., Shu, W., & Wu, M.-Y. (2012). Scheduling of connected autonomous vehicles on highway lanes [Conference Proceedings] [Paper presentation].In Global Communications Conference, 2012 IEEE (pp. 5556–5561). IEEE.
  • Hussain, O., Ghiasi, A., Li, X., & Qian, Z. (2016). Freeway lane management approach in mixed traffic environment with connected autonomous vehicles. arXiv preprint arXiv:1609.02946.
  • Kang, L., Zhao, W., Qi, B., & Banerjee, S. (2018). Augmenting self-driving with remote control: Challenges and directions [Conference Proceedings] [Paper presentation]. In International Workshop on Mobile Computing Systems & Applications (pp. 19–24). HotMobile. https://doi.org/10.1145/3177102.3177104
  • Li, B., Jia, N., Li, P., Ran, X., & Li, Y. (2019). Incrementally constrained dynamic optimization: A computational framework for lane change motion planning of connected and automated vehicles. Journal of Intelligent Transportation Systems, 23 (6), 557–568. https://doi.org/10.1080/15472450.2018.1562349
  • Li, B., Zhang, Y., Ge, Y., Shao, Z., & Li, P. (2017). Optimal control-based online motion planning for cooperative lane changes of connected and automated vehicles [Conference Proceedings] [Paper presentation]. In IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3689–3694). IEEE.
  • Lin, Q., Li, S. E., Du, X., Zhang, X., Peng, H., Luo, Y., & Li, K. (2018). Minimize the fuel consumption of connected vehicles between two red-signalized intersections in urban traffic. IEEE Transactions on Vehicular Technology, 67 (10), 9060–9072. https://doi.org/10.1109/TVT.2018.2864616
  • Luo, L-h., Liu, H., Li, P., & Wang, H. (2010). Model predictive control for adaptive cruise control with multi-objectives: comfort, fuel-economy, safety and car-following. Journal of Zhejiang University SCIENCE A, 11 (3), 191–201. https://doi.org/10.1631/jzus.A0900374
  • Ma, C., Hao, W., Wang, A., & Zhao, H. (2018). Developing a coordinated signal control system for urban ring road under the vehicle-infrastructure connected environment. IEEE Access, 6, 52471–52478. https://doi.org/10.1109/ACCESS.2018.2869890
  • Ma, J., Li, X., Shladover, S., Rakha, H. A., Lu, X.-Y., Jagannathan, R., & Dailey, D. J. (2016). Freeway speed harmonization. IEEE Transactions on Intelligent Vehicles, 1 (1), 78–89. https://doi.org/10.1109/TIV.2016.2551540
  • Ma, J., Li, X., Zhou, F., Hu, J., & Park, B. B. (2017). Parsimonious shooting heuristic for trajectory design of connected automated traffic part ii: Computational issues and optimization. Transportation Research Part B: Methodological, 95, 421–441. https://doi.org/10.1016/j.trb.2016.06.010
  • Mukai, M., & Kawabe, T. (2006). Model predictive control for lane change decision assist system using hybrid system representation [Paper presentation].In 2006 SICE-ICASE International Joint Conference [Conference Proceedings] (pp. 5120–5125). IEEE. https://doi.org/10.1109/SICE.2006.315230
  • Naranjo, J., Gonzalez, C., Garcia, R., & de Pedro, T. (2008). Lane-change fuzzy control in autonomous vehicles for the overtaking maneuver. IEEE Transactions on Intelligent Transportation Systems, 9 (3), 438–450. https://doi.org/10.1109/TITS.2008.922880
  • Olia, A., Razavi, S., Abdulhai, B., & Abdelgawad, H. (2018). Traffic capacity implications of automated vehicles mixed with regular vehicles. Journal of Intelligent Transportation Systems, 22 (3), 244–262. https://doi.org/10.1080/15472450.2017.1404680
  • Rajamani, R., Tan, H.-S., Law, B. K., & Zhang, W.-B. (2000). Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons. IEEE Transactions on Control Systems Technology, 8 (4), 695–708. https://doi.org/10.1109/87.852914
  • Rios-Torres, J., & Malikopoulos, A. A. (2017). Automated and cooperative vehicle merging at highway on-ramps. IEEE Transactions on Intelligent Transportation Systems, 18 (4), 780–789. https://doi.org/10.1109/TITS.2016.2587582
  • Schildbach, G., & Borrelli, F. (2005). Scenario model predictive control for lane change assistance on highways. [Conference Proceedings]. In Intelligent Vehicles Symposium, 2015 ieee (pp. 611–616). IEEE.
  • Schmidt, K. W. (2017). Cooperative adaptive cruise control for vehicle following during lane changes. IFAC-PapersOnLine, 50 (1), 12582–12587. https://doi.org/10.1016/j.ifacol.2017.08.2199
  • Schofield, K. (2005). Automotive lane change aid. Google Patents (US Patent 6), 882, 287.
  • Shladover, S., Su, D., & Lu, X.-Y. (2012). Impacts of cooperative adaptive cruise control on freeway traffic flow. Transportation Research Record: Journal of the Transportation Research Board, 2324 (1), 63–70. https://doi.org/10.3141/2324-08
  • Treiber, M., Hennecke, A., & Helbing, D. (2000). Congested traffic states in empirical observations and microscopic simulations. Physical Review E, 62 (2), 1805–1824. https://doi.org/10.1103/PhysRevE.62.1805
  • Yang, K., Guler, S. I., & Menendez, M. (2016). Isolated intersection control for various levels of vehicle technology: Conventional, connected, and automated vehicles. Transportation Research Part C: Emerging Technologies, 72, 109–129. [ https://doi.org/10.1016/j.trc.2016.08.009
  • Yang, K., Zheng, N., & Menendez, M. (2018). Multi-scale perimeter control approach in a connected-vehicle environment. Transportation Research Part C: Emerging Technologies, 94, 32–49. https://doi.org/10.1016/j.trc.2017.08.014
  • Zhou, F., Li, X., & Ma, J. (2017). Parsimonious shooting heuristic for trajectory design of connected automated traffic part I: Theoretical analysis with generalized time geography. Transportation Research Part B: Methodological, 95, 394–420. https://doi.org/10.1016/j.trb.2016.05.007
  • Zhou, M., Qu, X., & Jin, S. (2017). On the impact of cooperative autonomous vehicles in improving freeway merging: A modified intelligent driver model-based approach. IEEE Transactions on Intelligent Transportation Systems, 18 (6), 1422–1428.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.