Publication Cover
Journal of Intelligent Transportation Systems
Technology, Planning, and Operations
Volume 27, 2023 - Issue 3
580
Views
3
CrossRef citations to date
0
Altmetric
Articles

Lane-based estimation of travel time distributions by vehicle type via vehicle re-identification using low-resolution video images

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 364-383 | Received 19 Apr 2021, Accepted 07 Jan 2022, Published online: 30 Jan 2022

References

  • Aghabayk, K., Moridpour, S., Young, W., Sarvi, M., & Wang, Y. B. (2011). Comparing heavy vehicle and passenger car lane-changing maneuvers on arterial roads and freeways. Transportation Research Record: Journal of the Transportation Research Board, 2260(1), 94–101. https://doi.org/10.3141/2260-11
  • Araghi, B. N., Krishnan, R., & Lahrmann, H. (2016). Mode-specific travel time estimation using bluetooth technology. Journal of Intelligent Transportation Systems, 20(3), 219–228. https://doi.org/10.1080/15472450.2015.1052906
  • Bai, Y., Lou, Y., Gao, F., Wang, S., Wu, Y., & Duan, L.-Y. (2018). Group-sensitive triplet embedding for vehicle reidentification. IEEE Transactions on Multimedia, 20(9), 2385–2399. https://doi.org/10.1109/TMM.2018.2796240
  • Basar, G., Cetin, M., & Nichols, A. P. (2018). Comparison of vehicle re-identification models for trucks based on axle spacing measurements. Journal of Intelligent Transportation Systems, 22(6), 517–529. https://doi.org/10.1080/15472450.2018.1441027
  • Cao, X., Young, W., Sarvi, M., & Kim, I. (2016). Study of mandatory lane change execution behavior model for heavy vehicles and passenger cars. Transportation Research Record: Journal of the Transportation Research Board, 2561(1), 73–80. https://doi.org/10.3141/2561-09
  • Celikoglu, H. B. (2013). Flow-based freeway travel-time estimation: A comparative evaluation within dynamic path loading. IEEE Transactions on Intelligent Transportation Systems, 14(2), 772–781. https://doi.org/10.1109/TITS.2012.2234455
  • Chathoth, V., & Asaithambi, G. (2018). Modeling Free-flow Speeds on Undivided Roads in Mixed Traffic with Weak Lane Discipline. Transportation Research Record: Journal of the Transportation Research Board, 2672(15), 105–117. https://doi.org/10.1177/0361198118794538
  • Chen, B. Y., Li, Q., & Lam, W. H. K. (2016). Finding the k reliable shortest paths under travel time uncertainty. Transportation Research Part B: Methodological, 94, 189–203. https://doi.org/10.1016/j.trb.2016.09.013
  • Chen, P., Zeng, W., Chen, M., Yu, G., & Wang, Y. (2019). Modeling arterial travel time distribution by accounting for link correlations: a copula-based approach. Journal of Intelligent Transportation Systems, 23(1), 28–40. https://doi.org/10.1080/15472450.2018.1484738
  • Chiou, J. M., Liou, H. T., & Chen, W. H. (2021). Modeling time-varying variability and reliability of freeway travel time using functional principal component analysis. IEEE Transactions on Intelligent Transportation Systems, 22(1), 257–266. https://doi.org/10.1109/TITS.2019.2956090
  • Coifman, B., & Cassidy, M. (2002). Vehicle reidentification and travel time measurement on congested freeways. Transportation Research Part A: Policy and Practice, 36(10), 899–917. https://doi.org/10.1016/S0965-8564(01)00046-5
  • Duan, P., Mao, G., Kang, J., & Huang, B. (2020). Estimation of link travel time distribution with limited traffic detectors. IEEE Transactions on Intelligent Transportation Systems, 21(9), 3730–3743. https://doi.org/10.1109/TITS.2019.2932053
  • Ernst, J. M., Krogmeier, J. V., & Bullock, D. M. (2014). Estimating required probe vehicle re-identification requirements for characterizing link travel times. IEEE Intelligent Transportation Systems Magazine, 6(1), 50–58. https://doi.org/10.1109/MITS.2013.2288648
  • Filipovska, M., Mahmassani, H. S., & Mittal, A. (2021). Estimation of path travel time distributions in stochastic time-varying networks with correlations. Transportation Research Record: Journal of the Transportation Research Board, 2675(11), 498–508. https://doi.org/10.1177/03611981211018464
  • Fu, F., Qian, W., & Dong, H. (2019). Estimation of route travel time distribution with information fusion from automatic number plate recognition data. Journal of Transportation Engineering, Part A: Systems, 145(7), 04019029. https://doi.org/10.1061/JTEPBS.0000242
  • Galil, Z. (1986). Efficient algorithms for finding maximum matching in graphs. ACM Computing Surveys, 18(1), 23–38. https://doi.org/10.1145/6462.6502
  • Guo, Y., & Yang, L. (2020). Reliable estimation of urban link travel time using multi-sensor data fusion. Information, 11(5), 267. https://doi.org/10.3390/info11050267
  • Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks [Paper presentation]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2261–2269. https://doi.org/10.1109/CVPR.2017.243
  • Jenelius, E., & Koutsopoulos, H. N. (2013). Travel time estimation for urban road networks using low frequency probe vehicle data. Transportation Research Part B: Methodological, 53(1), 64–81. https://doi.org/10.1016/j.trb.2013.03.008
  • Jiang, Z., Chen, X., & Ouyang, Y. (2017). Traffic state and emission estimation for urban expressways based on heterogeneous data. Transportation Research Part D: Transport and Environment, 53(1), 440–453. https://doi.org/10.1016/j.trd.2017.04.042
  • Khan, S. D., & Ullah, H. (2019). A survey of advances in vision-based vehicle re-identification. Computer Vision and Image Understanding, 182(1), 50–63. https://doi.org/10.1016/j.cviu.2019.03.001
  • Kwong, K., Kavaler, R., Rajagopal, R., & Varaiya, P. (2009). Arterial travel time estimation based on vehicle re-identification using wireless magnetic sensors. Transportation Research Part C: Emerging Technologies, 17(6), 586–606. https://doi.org/10.1016/j.trc.2009.04.003
  • Li, M., Chen, X., & Ni, W. (2016). An extended generalized filter algorithm for urban expressway traffic time estimation based on heterogeneous data. Journal of Intelligent Transportation Systems, 20(5), 474–484. https://doi.org/10.1080/15472450.2016.1153426
  • Li, H., Li, C., Zhu, X., Zheng, A., & Luo, B. (2020). Multi-Spectral Vehicle Re-Identification: A Challenge. Proceedings of the AAAI Conference on Artificial Intelligence, 34(7), 11345–11353. https://doi.org/10.1609/aaai.v34i07.6796
  • Li, R., Rose, G., & Sarvi, M. (2006). Evaluation of speed-based travel time estimation models. Journal of Transportation Engineering, 132(7), 540–547. https://doi.org/10.1061/(ASCE)0733-947X(2006)132:7(540)
  • Lu, L., He, Z., Wang, J., Chen, J., & Wang, W. (2021). Estimation of lane-level travel time distributions under a connected environment. Journal of Intelligent Transportation Systems, 25(5), 501–512. https://doi.org/10.1080/15472450.2020.1854093
  • Ma, Z., Koutsopoulos, H. N., Ferreira, L., & Mesbah, M. (2017). Estimation of trip travel time distribution using a generalized Markov chain approach. Transportation Research Part C: Emerging Technologies, 74(1), 1–21. https://doi.org/10.1016/j.trc.2016.11.008
  • Mori, U., Mendiburu, A., Álvarez, M., & Lozano, J. A. (2015). A review of travel time estimation and forecasting for advanced traveller information systems. Transportmetrica A: Transport Science, 11(2), 119–157. https://doi.org/10.1080/23249935.2014.932469
  • Moridpour, S., Mazloumi, E., & Mesbah, M. (2015). Impact of heavy vehicles on surrounding traffic characteristics. Journal of Advanced Transportation, 49(4), 535–552. https://doi.org/10.1002/atr.1286
  • Moridpour, S., Sarvi, M., & Rose, G. (2010). Modeling the lane-changing execution of multiclass vehicles under heavy traffic conditions. Transportation Research Record: Journal of the Transportation Research Board, 2161(1), 11–19. https://doi.org/10.3141/2161-02
  • Oliveira-Neto, F. M., Han, L. D., & Jeong, M. K. (2012). Online license plate matching procedures using license-plate recognition machines and new weighted edit distance. Transportation Research Part C: Emerging Technologies, 21(1), 306–320. https://doi.org/10.1016/j.trc.2011.11.003
  • Prokhorchuk, A., Dauwels, J., & Jaillet, P. (2020). Estimating travel time distributions by Bayesian network inference. IEEE Transactions on Intelligent Transportation Systems, 21(5), 1867–1876. https://doi.org/10.1109/TITS.2019.2899906
  • Redmon, J., & Farhadi, A. (2018). YOLOv3: An incremental improvement. arXiv preprint arXiv: 1804.02767.
  • Samara, A., Rempe, F., & Gottlich, S. (2021). A novel approach for vehicle travel time distribution: copula-based dependent discrete convolution. Transportation Letters, 1–12. https://doi.org/10.1080/19427867.2021.1941707
  • Sanaullah, I., Quddus, M., & Enoch, M. (2016). Developing travel time estimation methods using sparse GPS data. Journal of Intelligent Transportation Systems, 20(6), 532–544. https://doi.org/10.1080/15472450.2016.1154764
  • Shi, C., Chen, B. Y., Lam, W. H. K., & Li, Q. (2017). Heterogeneous data fusion method to estimate travel time distributions in congested road networks. Sensors, 17(12), 2822–2822. https://doi.org/10.3390/s17122822
  • Sil, G., Nama, S., Maji, A., & Maurya, A. K. (2020). Effect of horizontal curve geometry on vehicle speed distribution: a four-lane divided highway study. Transportation Letters, 12(10), 713–722. https://doi.org/10.1080/19427867.2019.1695562
  • Soriguera, F., & Robusté, F. (2011). Estimation of traffic stream space mean speed from time aggregations of double loop detector data. Transportation Research Part C: Emerging Technologies, 19(1), 115–129. https://doi.org/10.1016/j.trc.2010.04.004
  • Sumalee, A., Wang, J., Jedwanna, K., & Suwansawat, S. (2012). Probabilistic fusion of vehicle features for reidentification and travel time estimation using video image data. Transportation Research Record: Journal of the Transportation Research Board, 2308(1), 73–82. https://doi.org/10.3141/2308-08
  • Sun, C. C., Arr, G. S., Ramachandran, R. P., & Ritchie, S. G. (2004). Vehicle reidentification using multidetector fusion. IEEE Transactions on Intelligent Transportation Systems, 5(3), 155–164. https://doi.org/10.1109/TITS.2004.833770
  • Tam, M. L., & Lam, W. H. K. (2011). Application of automatic vehicle identification technology for real-time journey time estimation. Information Fusion, 12(1), 11–19. https://doi.org/10.1016/j.inffus.2010.01.002
  • Tang, K., Chen, S., Liu, Z., & Khattak, A. J. (2018). A tensor-based Bayesian probabilistic model for citywide personalized travel time estimation. Transportation Research Part C: Emerging Technologies, 90(1), 260–280. https://doi.org/10.1016/j.trc.2018.03.004
  • Tang, J., Hu, J., Hao, W., Chen, X., & Qi, Y. (2020). Markov Chains based route travel time estimation considering link spatio-temporal correlation. Physica A: Statistical Mechanics and Its Applications, 545, 123759. https://doi.org/10.1016/j.physa.2019.123759
  • Tang, Z., Wang, G., Xiao, H., Zheng, A., & Hwang, J.-N. (2018). Single-camera and inter-camera vehicle tracking and 3D speed estimation based on fusion of visual and semantic features [Paper presentation]. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 108–115. https://doi.org/10.1109/CVPRW.2018.00022
  • Toledo, T., & Zohar, D. (2007). Modeling duration of lane changes. Transportation Research Record: Journal of the Transportation Research Board, 1999(1), 71–78. https://doi.org/10.3141/1999-08
  • Uno, N., Kurauchi, F., Tamura, H., & Iida, Y. (2009). Using bus probe data for analysis of travel time variability. Journal of Intelligent Transportation Systems, 13(1), 2–15. https://doi.org/10.1080/15472450802644439
  • Wang, J., Indra-Payoong, N., Sumalee, A., & Panwai, S. (2014). Vehicle reidentification with self-adaptive time windows for real-time travel time estimation. IEEE Transactions on Intelligent Transportation Systems, 15(2), 540–552. https://doi.org/10.1109/TITS.2013.2282163
  • Wang, X., Yang, M., & Hurwitz, D. (2019). Analysis of cut-in behavior based on naturalistic driving data. Accident; Analysis and Prevention, 124(1), 127–137. https://doi.org/10.1016/j.aap.2019.01.006
  • Wojke, N., Bewley, A., & Paulus, D. (2017). Simple online and realtime tracking with a deep association metric [Paper presentation]. Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), 3645–3649. https://doi.org/10.1109/ICIP.2017.8296962
  • Yang, M., Wang, X., & Quddus, M. (2019). Examining lane change gap acceptance, duration and impact using naturalistic driving data. Transportation Research Part C: Emerging Technologies, 104(1), 317–331. https://doi.org/10.1016/j.trc.2019.05.024
  • Yang, Q., Wu, G., Boriboonsomsin, K., & Barth, M. (2018). A novel arterial travel time distribution estimation model and its application to energy/emissions estimation. Journal of Intelligent Transportation Systems, 22(4), 325–337. https://doi.org/10.1080/15472450.2017.1365606
  • Yu, W., Park, S., Kim, D. S., & Ko, S.-S. (2015). An arterial incident detection procedure utilizing real-time vehicle reidentification travel time data. Journal of Intelligent Transportation Systems, 19(4), 370–384. https://doi.org/10.1080/15472450.2014.972762
  • Yun, M., & Qin, W. (2019). Minimum sampling size of floating cars for urban link travel time distribution estimation. Transportation Research Record: Journal of the Transportation Research Board, 2673(3), 24–43. https://doi.org/10.1177/0361198119834297
  • Yun, M., Qin, W., Yang, X., & Liang, F. (2019). Estimation of urban route travel time distribution using Markov chains and pair-copula construction. Transportmetrica B: Transport Dynamics, 7(1), 1521–1552. https://doi.org/10.1080/21680566.2019.1637798
  • Zhang, C., Chen, B. Y., Lam, W. H. K., Ho, H. W., Shi, X., Yang, X., Ma, W., Wong, S. C., & Chow, A. H. F. (2021). Vehicle re-identification for lane-level travel time estimations on congested urban road networks using video images. IEEE Transactions on Intelligent Transportation Systems, 1–17. https://doi.org/10.1109/TITS.2021.3118206
  • Zhang, K., Jia, N., Zheng, L., & Liu, Z. (2019). A novel generative adversarial network for estimation of trip travel time distribution with trajectory data. Transportation Research Part C: Emerging Technologies, 108(1), 223–244. https://doi.org/10.1016/j.trc.2019.09.019
  • Zheng, F., & Van Zuylen, H. (2014). The development and calibration of a model for urban travel time distributions. Journal of Intelligent Transportation Systems, 18(1), 81–94. https://doi.org/10.1080/15472450.2013.802155
  • Zhou, J., Rilett, L., Jones, E., & Chen, Y. (2018). Estimating passenger car equivalents on level freeway segments experiencing high truck percentages and differential average speeds. Transportation Research Record: Journal of the Transportation Research Board, 2672(15), 44–54. https://doi.org/10.1177/0361198118798237

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.