Publication Cover
Journal of Intelligent Transportation Systems
Technology, Planning, and Operations
Volume 27, 2023 - Issue 6
450
Views
1
CrossRef citations to date
0
Altmetric
Articles

Machine learning for activity pattern detection

ORCID Icon, & ORCID Icon
Pages 834-848 | Received 03 Sep 2021, Accepted 27 May 2022, Published online: 12 Jun 2022

References

  • Abdulazim, T., Abdelgawad, H., Habib, K., & Abdulhai, B. (2013). Using smartphones and sensor technologies to automate collection of travel data. Transportation Research Record: Journal of the Transportation Research Board, 2383(1), 44–52. https://doi.org/10.3141/2383-06
  • Antunes, M., Barroca, J., & Guerreiro de Oliveira, D. (2020). Urban future with a purpose. current challenges: a driver for future solutions. Retrieved from https://www2.deloitte.com/global/en/pages/public-sector/articles/urban-future-with-a-purpose.html
  • Bohte, W., & Maat, K. (2009). Deriving and validating trip purposes and travel modes for multi-day gps-based travel surveys: A large-scale application in the netherlands. Transportation Research Part C: Emerging Technologies, 17(3), 285–297. https://doi.org/10.1016/j.trc.2008.11.004
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. (https://doi.org/10.1023/A:1010933404324
  • Bricka, S., Sen, S., Paleti, R., & Bhat, C. (2012). An analysis of the factors influencing differences in survey-reported and gps-recorded trips. Transportation Research Part C: Emerging Technologies, 21(1), 67–88. https://doi.org/10.1016/j.trc.2011.09.005
  • Byon, Y.-J., Abdulhai, B., & Shalaby, A. (2009). Real-time transportation mode detection via tracking global positioning system mobile devices. Journal of Intelligent Transportation Systems, 13(4), 161–170. https://doi.org/10.1080/15472450903287781
  • Chen, C., Ma, J., Susilo, Y., Liu, Y., & Wang, M. (2016). The promises of big data and small data for travel behavior (aka human mobility) analysis. Transportation Research Part C: Emerging Technologies, 68, 285–299. https://doi.org/10.1016/j.trc.2016.04.005
  • Chung, E., & Shalaby, A. (2005). A trip reconstruction tool for gps-based personal travel surveys. Transportation Planning and Technology, 28(5), 381–401. https://doi.org/10.1080/03081060500322599
  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1007/BF00994018
  • Cottrill, C., Pereira, F., Zhao, F., Dias, I., Lim, H., Ben-Akiva, M., & Zegras, P. (2013). Future mobility survey: Experience in developing a smartphone-based travel survey in singapore. Transportation Research Record: Journal of the Transportation Research Board, 2354(1), 59–67. https://doi.org/10.3141/2354-07
  • Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (pp. 226–231). AAAI Press.
  • Feng, T., & Timmermans, H. J. (2015). Detecting activity type from gps traces using spatial and temporal information. European Journal of Transport and Infrastructure Research, 15(4), 662–674. https://doi.org/10.18757/ejtir.2015.15.4.3103
  • Gao, Q., Molloy, J., & Axhausen, K. (2020). Trip purpose imputation using gps trajectories with machine learning. IEEE Intelligent Transportation Systems Transactions
  • Gong, H., Chen, C., Bialostozky, E., & Lawson, C. (2012). A GPS/GIS method for travel mode detection in New York City. Computers, Environment and Urban Systems, 36(2), 131–139. https://doi.org/10.1016/j.compenvurbsys.2011.05.003
  • Gong, L., Morikawa, T., Yamamoto, T., & Sato, H. (2014). Deriving personal trip data from GPS data: A literature review on the existing methodologies. Procedia - Social and Behavioral Sciences, 138, 557–565. The 9th International Conference on Traffic and Transportation Studies (ICTTS 2014)) https://doi.org/10.1016/j.sbspro.2014.07.239
  • Griffin, T., & Huang, Y. (2005). A decision tree classification model to automate trip purpose derivation. In The Proceedings of the Isca 18th International Conference on Computer Applications in Industry and Engineering (pp. 44–49).
  • Han, G., & Sohn, K. (2016). Activity imputation for trip-chains elicited from smart-card data using a continuous hidden markov model. Transportation Research Part B: Methodological, 83, 121–135. https://doi.org/10.1016/j.trb.2015.11.015
  • Hodges, J. L. (1958). The significance probability of the smirnov two-sample test. Arkiv För Matematik, 3(5), 469–486. https://doi.org/10.1007/BF02589501
  • Kanarachos, S., Christopoulos, S., & Chroneos, A. (2018). Smartphones as an integrated platform for monitoring driver behaviour: The role of sensor fusion and connectivity. Transportation Research Part C: Emerging Technologies, 95, 867–882. https://doi.org/10.1016/j.trc.2018.03.023
  • Kisilevich, S., Mansmann, F., Nanni, M., & Rinzivillo, S. (2010). Spatio-temporal clustering. In O. Maimon & L. Rokach (Eds.), Data mining and knowledge discovery handbook (pp. 855–874). Springer US.
  • Kitchin, R. (2014). The data revolution: Big data, open data, data infrastructures and their consequences. SAGE.
  • Kucharski, R., Fielbaum, A., Alonso-Mora, J., & Cats, O. (2020). If you are late, everyone is late: late passenger arrival and ride-pooling systems’ performance. Transportmetrica A: Transport Science, 17(4), 1077–1100. https://doi.org/10.1080/23249935.2020.1829170.
  • Kusakabe, T., & Asakura, Y. (2014). Behavioural data mining of transit smart card data: A data fusion approach. Transportation Research Part C: Emerging Technologies, 46, 179–191. https://doi.org/10.1016/j.trc.2014.05.012
  • Marchal, P., Madre, J., & Yuan, S. (2011). Postprocessing procedures for person-based global positioning system data collected in the French national travel survey 2007–2008. Transportation Research Record: Journal of the Transportation Research Board, 2246(1), 47–54. https://doi.org/10.3141/2246-07
  • Marra, A., Becker, H., Axhausen, K., & Corman, F. (2019). Developing a passive gps tracking system to study long-term travel behavior. Transportation Research Part C: Emerging Technologies, 104, 348–368. https://doi.org/10.1016/j.trc.2019.05.006
  • Martin, B., Addona, V., Wolfson, J., Adomavicius, G., & Fan, Y. (2017). Methods for real-time prediction of the mode of travel using smartphone-based gps and accelerometer data. Sensors, 17(9), 2058. https://doi.org/10.3390/s17092058
  • McInnes, L., Healy, J., & Astels, S. (2017). hdbscan: Hierarchical density based clustering. The Journal of Open Source Software, 2(11), 205. https://doi.org/10.21105/joss.00205
  • Menardi, G., & Torelli, N. (2014). Training and assessing classification rules with imbalanced data. Data Mining and Knowledge Discovery, 28(1), 92–122. https://doi.org/10.1007/s10618-012-0295-5
  • Milne, D., & Watling, D. (2019). Big data and understanding change in the context of planning transport systems. Journal of Transport Geography, 76, 235–244. https://doi.org/10.1016/j.jtrangeo.2017.11.004
  • Moiseeva, A., Jessurun, J., & Timmermans, H. (2010). Semi-automatic imputation of activity-travel diaries using gps traces, prompted recall and context-sensitive learning algorithms. In Proceedings of the 89th Trb Annual Meeting, Washington, DC.
  • Montini, L., Rieser-Schüssler, N., Horni, A., & Axhausen, K. (2014). Trip purpose identification from gps tracks. Transportation Research Record: Journal of the Transportation Research Board, 2405(1), 16–23. https://doi.org/10.3141/2405-03
  • Mori, U., Mendiburu, A., Álvarez, M., & Lozano, J. (2015). A review of travel time estimation and forecasting for advanced traveller information systems. Transportmetrica A: Transport Science, 11(2), 119–157. https://doi.org/10.1080/23249935.2014.932469
  • Nguyen, M., Armoogum, J., Madre, J., & Garcia, C. (2020). Reviewing trip purpose imputation in gps-based travel surveys. Journal of Traffic and Transportation Engineering (English Edition), 7(4), 395–412. https://doi.org/10.1016/j.jtte.2020.05.004
  • Nigro, M., Cipriani, E., & del Giudice, A. (2018). Exploiting floating car data for time-dependent origin–destination matrices estimation. Journal of Intelligent Transportation Systems, 22(2), 159–174. https://doi.org/10.1080/15472450.2017.1421462
  • Nikolic, M., & Bierlaire, M. (2017). Review of transportation mode detection approaches based on smartphone data. In 17th Swiss Transport Research Conference.
  • Oliveira, M., Vovsha, P., Wolf, J., Birotker, Y., Givon, D., & Paasche, J. (2011). Global positioning system–assisted prompted recall household travel survey to support development of advanced travel model in Jerusalem, Israel. Transportation Research Record: Journal of the Transportation Research Board, 2246(1), 16–23. https://doi.org/10.3141/2246-03
  • Pas, E., & Sundar, S. (1995). Intrapersonal variability in daily urban travel behavior: some additional evidence. Transportation, 22(2), 135–150. https://doi.org/10.1007/BF01099436
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
  • Schlich, R., & Axhausen, K. (2003). Habitual travel behaviour: Evidence from a six-week travel diary. Transportation, 30(1), 13–36. https://doi.org/10.1023/A:1021230507071
  • Schoenfelder, S., Axhausen, K., Antille, N., & Bierlaire, M. (2002). Exploring the potentials of automatically collected gps data for travel behaviour analysis: A Swedish data source. GI-Technologien Für Verkehr Und Logistik, (13), 155–179.
  • Schuessler, N., & Axhausen, K. (2009). Processing raw data from global positioning systems without additional information. Transportation Research Record: Journal of the Transportation Research Board, 2105(1), 28–36. https://doi.org/10.3141/2105-04
  • Seo, T., Kusakabe, T., Gotoh, H., & Asakura, Y. (2019). Interactive online machine learning approach for activity-travel survey. Transportation Research Part B: Methodological, 123, 362–373. https://doi.org/10.1016/j.trb.2017.11.009
  • Shen, L., & Stopher, P. R. (2014). Review of gps travel survey and gps data-processing methods. Transport Reviews, 34(3), 316–334. https://doi.org/10.1080/01441647.2014.903530
  • Stopher, P., Kockelman, K., Greaves, S., & Clifford, E. (2008). Reducing burden and sample sizes in multiday household travel surveys. Transportation Research Record: Journal of the Transportation Research Board, 2064(1), 12–18. https://doi.org/10.3141/2064-03
  • Susilo, Y. O., & Axhausen, K. W. (2014). Repetitions in individual daily activity–travel–location patterns: a study using the herfindahl–hirschman index. Transportation, 41(5), 995–1011. https://doi.org/10.1007/s11116-014-9519-4
  • Toader, B., Cantelmo, G., Popescu, M., & Viti, F. (2018). Using passive data collection methods to learn complex mobility patterns: An exploratory analysis [Paper presentation]. 2018 21st International Conference on Intelligent Transportation Systems (ITSC), (pp. 993–998). https://doi.org/10.1109/ITSC.2018.8569935
  • Tsui, S., & Shalaby, A. (2006). Enhanced system for link and mode identification for personal travel surveys based on global positioning systems. Transportation Research Record: Journal of the Transportation Research Board, 1972(1), 38–45. https://doi.org/10.1177/0361198106197200105
  • Wolf, J., Guensler, R., & Bachman, W. (2001). Elimination of the travel diary: Experiment to derive trip purpose from global positioning system travel data. Transportation Research Record: Journal of the Transportation Research Board, 1768(1), 125–134. https://doi.org/10.3141/1768-15
  • Wu, L., Yang, B., & Jing, P. (2016). Travel mode detection based on gps raw data collected by smartphones: a systematic review of the existing methodologies. Information, 7(4), 67. https://doi.org/10.3390/info7040067
  • Xiao, G., Juan, Z., & Zhang, C. (2016). Detecting trip purposes from smartphone-based travel surveys with artificial neural networks and particle swarm optimization. Transportation Research Part C: Emerging Technologies, 71, 447–463. https://doi.org/10.1016/j.trc.2016.08.008
  • Yang, F., Yao, Z., Cheng, Y., Ran, B., & Yang, D. (2016). Multimode trip information detection using personal trajectory data. Journal of Intelligent Transportation Systems, 20(5), 449–460. https://doi.org/10.1080/15472450.2016.1151791
  • Yao, Z., Wang, Y., Yang, F., Cheng, Y., & Ran, B. (2021). Map matching for travel route identification based on earth mover’s distance algorithm using wireless cell trajectory data. Journal of Intelligent Transportation Systems, 25(6), 644–656. https://doi.org/10.1080/15472450.2021.1955209
  • Zhang, H. (2004). The optimality of naïve bayes. In In flairs2004 conference.
  • Zhang, Z., He, Q., & Zhu, S. (2017). Potentials of using social media to infer the longitudinal travel behavior: A sequential model-based clustering method. Transportation Research Part C: Emerging Technologies, 85, 396–414. https://doi.org/10.1016/j.trc.2017.10.005
  • Zhao, F., Pereira, F., Ball, R., Kim, Y., Han, Y., Zegras, C., & Ben-Akiva, M. (2015). Exploratory analysis of a smartphone-based travel survey in Singapore. Transportation Research Record: Journal of the Transportation Research Board, 2494(1), 45–56. https://doi.org/10.3141/2494-06
  • Zhao, S., & Zhang, K. (2019). A distributionally robust optimization approach to reconstructing missing locations and paths using high-frequency trajectory data. Transportation Research Part C: Emerging Technologies, 102, 316–335. https://doi.org/10.1016/j.trc.2019.03.012
  • Zheng, Y., Liu, F., & Hsieh, H.-P. (2013). U-air [Paper presentation]. When urban air quality inference meets big data. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1436–1444).
  • Zhu, Q., Zhu, M., Li, M., Fu, M., Huang, Z., Gan, Q., & Zhou, Z. (2016). Identifying transportation modes from raw gps data. In International Conference of Pioneering Computer Scientists, Engineers and Educators (pp. 395–409).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.