2,245
Views
2
CrossRef citations to date
0
Altmetric
Review

From hacking the human genome to editing organs

, &

REFERENCES

  • Jaenisch RM, B. Simian Virus 40 DNA Sequences in DNA of Healthy Adult Mice Derived from Preimplantation Blastocysts Injected with Viral DNA. Proc Natl Acad Sci 1974; 71(4):1250-4; PMID:4364530; http://dx.doi.org/10.1073/pnas.71.4.1250
  • Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS. Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature 1985; 317:230-4; PMID:2995814; http://dx.doi.org/10.1038/317230a0
  • Robertson E, Bradley A, Kuehn M, Martin Evans. Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 1986; 323:445-8; PMID:3762693; http://dx.doi.org/10.1038/323445a0
  • Friedmann T, Roblin R. Gene therapy for human genetic disease? Science 1972; 174(4025):949-55; http://dx.doi.org/10.1126/science.175.4025.949
  • Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, Shearer G, Chang L, Chiang Y, Tolstoshev P, et al. T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science 1995; 20(270):475-80; http://dx.doi.org/10.1126/science.270.5235.475
  • Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL, et al. Gene Therapy of Human Severe Combined Immunodeficiency (SCID)–X1 Disease. Science 2000; 288:699-72; http://dx.doi.org/10.1126/science.288.5466.669
  • Check E. A tragic setback. Nature 2002; 420:116-8
  • Miller J, McLachlan AD, Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 1985; 4(6):1609-14; PMID:4040853
  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet 2010; 11(9):636-46; PMID:20717154; http://dx.doi.org/10.1038/nrg2842
  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors. Science 2009; 326:1509-12; PMID:19933107; http://dx.doi.org/10.1126/science.1178811
  • Baker M. Method of the Year 2012. Nature Methods 2012; 9(1):1-1; http://dx.doi.org/10.1038/nmeth.1852
  • Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 2013; 14(1):49-55; PMID:23169466; http://dx.doi.org/10.1038/nrm3486
  • Ishino Y S H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 1987; 169(12):5429-33; PMID:3316184
  • Barrangou R. Cas9 Targeting and the CRISPR Revolution. Science 2014; 344:707-8; PMID:24833384; http://dx.doi.org/10.1126/science.1252964
  • Meyer M, Ortiz O, Hrabe de Angelis M, Wurst W, Kuhn R. Modeling disease mutations by gene targeting in one-cell mouse embryos. Proc Natl Acad Sci U S A 2012; 109(24):9354-9; PMID:22660928; http://dx.doi.org/10.1073/pnas.1121203109
  • Wefers B, Meyer M, Ortiz O, Hrabé de Angelis M, Hansen J, Wurst W, Kühn R. Direct production of mouse disease models by embryo microinjection of TALENs and oligodeoxynucleotides. PNAS 2013; 110(10):3782-7; PMID:23426636; http://dx.doi.org/10.1073/pnas.1218721110
  • Fujii W, Kawasaki K, Sugiura K, Naito K. Efficient generation of large-scale genome-modified mice using gRNA and CAS9 endonuclease. Nucleic Acids Res 2013; 41(20):e187; PMID:23997119; http://dx.doi.org/10.1093/nar/gkt772
  • Soldner F, Laganiere J, Cheng AW, Hockemeyer D, Gao Q, Alagappan R, Khurana V, Golbe LI, Myers RH, Lindquist S, et al. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 2011; 146(2):318-31; PMID:21757228; http://dx.doi.org/10.1016/j.cell.2011.06.019
  • Ding Q, Lee YK, Schaefer EA, Peters DT, Veres A, Kim K, Kuperwasser N, Motola DL, Meissner TB, Hendriks WT, et al. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 2013; 12(2):238-51; PMID:23246482; http://dx.doi.org/10.1016/j.stem.2012.11.011
  • Piganeau M, Ghezraoui H, De Cian A, Guittat L, Tomishima M, Perrouault L, René O, Katibah GE, Zhang L, Holmes MC, et al. Cancer translocations in human cells induced by zinc finger and TALE nucleases. Genome Res 2013; 23(7):1182-93; PMID:23568838; http://dx.doi.org/10.1101/gr.147314.112
  • Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M, Kerkhoven RM, Madiredjo M, Nijkamp W, Weigelt B, et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 2004; 428:431-7; PMID:15042092; http://dx.doi.org/10.1038/nature02371
  • Jiang D, Zhao L, Clapham DE. Genome-Wide RNAi Screen Identifies Letm1 as a Mitochondrial Ca2+/H+ Antiporter. Science 2009; 326(5949):144-7; PMID:19797662; http://dx.doi.org/10.1126/science.1175145
  • Carette JE, Guimaraes CP, Varadarajan M, Park AS, Wuethrich I, Godarova A, Kotecki M, Cochran BH, Spooner E, Ploegh HL, et al. Haploid Genetic Screens in Human Cells Identify Host Factors Used by Pathogens. Science 2009; 326:1231-5; PMID:19965467; http://dx.doi.org/10.1126/science.1178955
  • Zhou Y, Zhu S, Cai C, Yuan P, Li C, Huang Y, Wei W. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 2014; 509(7501):487-91; PMID:24717434; http://dx.doi.org/10.1038/nature13166
  • Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic Screens in Human Cells Using the CRISPR-Cas9 System. Science 2014; 343:80-4; PMID:24336569; http://dx.doi.org/10.1126/science.1246981
  • Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG, et al. Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells. Science 2014; 343:84-7; PMID:24336571; http://dx.doi.org/10.1126/science.1247005
  • Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera Mdel C, Yusa K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 2014; 32(3):267-73; PMID:24535568; http://dx.doi.org/10.1038/nbt.2800
  • Xia Y, Nivet E, Sancho-Martinez I, Gallegos T, Suzuki K, Okamura D, Wu MZ, Dubova I, Esteban CR, Montserrat N, et al. Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat Cell Biol 2013; 15(12):1507-15; PMID:24240476; http://dx.doi.org/10.1038/ncb2872
  • Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent CK, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 2013; 13(6):653-8; PMID:24315439; http://dx.doi.org/10.1016/j.stem.2013.11.002
  • Ito R, Takahashi T, Katano I, Ito M. Current advances in humanized mouse models. Cell Mol Immunol 2012; 9(3):208-14; PMID:22327211; http://dx.doi.org/10.1038/cmi.2012.2
  • Azuma H, Paulk N, Ranade A, Dorrell C, Al-Dhalimy M, Ellis E, Strom S, Kay MA, Finegold M, Grompe M. Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/- mice. Nat Biotechnol 2007; 25(8):903-10; PMID:17664939; http://dx.doi.org/10.1038/nbt1326
  • Bility MT, Cheng L, Zhang Z, Luan Y, Li F, Chi L et al. Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: induction of human-specific liver fibrosis and M2-like macrophages. PLoS Pathog 2014; 10(3):e1004032; PMID:24651854; http://dx.doi.org/10.1371/journal.ppat.1004032
  • Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M, Sato H, Lee YS, Usui J, Knisely AS, et al. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell 2010; 142(5):787-99; PMID:20813264; http://dx.doi.org/10.1016/j.cell.2010.07.039
  • Brehm MA, Shultz LD, Greiner DL. Humanized mouse models to study human diseases. Curr Opin Endocrinol Diabetes Obes 2010; 17(2):120-5; PMID:20150806; http://dx.doi.org/10.1097/MED.0b013e328337282f
  • Zhou J, Shen B, Zhang W, Wang J, Yang J, Chen L, Zhang N, Zhu K, Xu J, Hu B, et al. One-step generation of different immunodeficient mice with multiple gene modifications by CRISPR/Cas9 mediated genome engineering. Int J Biochem Cell Biol 2014; 46:49-55; PMID:24269190; http://dx.doi.org/10.1016/j.biocel.2013.10.010
  • Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005; 435:646-51; PMID:15806097; http://dx.doi.org/10.1038/nature03556
  • Genovese P, Schiroli G, Escobar G, Di Tomaso T, Firrito C, Calabria A, Moi D, Mazzieri R, Bonini C, Holmes MC, et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nature; 510:235-40; PMID:24870228; http://dx.doi.org/10.1038/nature13420
  • Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu PQ, Paschon DE, Miranda E, Ordóñez A, Hannan NR, Rouhani FJ, et al. Targeted gene correction of α 1 -antitrypsin deficiency in induced pluripotent stem cells. Nature 2011; 478:391-4; PMID:21993621; http://dx.doi.org/10.1038/nature10424
  • Chang CJ, Bouhassira EE. Zinc-finger nuclease-mediated correction of α-thalassemia in iPS cells. Gene therapy 2012; 120:3906-14
  • Zou J S C, Chou BK, Choi U, Pan J, Wang H, Dowey SN, Cheng L, Malech HL. Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells : functional correction by zinc finger nuclease – mediated safe harbor targeting. Blood 2011; 117(21):5561-72; PMID:21411759; http://dx.doi.org/10.1182/blood-2010-12-328161
  • Sun N, Zhao H. Seamless correction of the sickle cell disease mutation of the HBB gene in human induced pluripotent stem cells using TALENs. Biotechnol Bioeng 2014; 111(5):1048-53; PMID:23928856; http://dx.doi.org/10.1002/bit.25018
  • Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS, Malani N, Anguela XM, Sharma R, Ivanciu L, et al. In vivo genome editing restores hemostasis in a mouse model of hemophilia. Nature 2010; 475:217-21; http://dx.doi.org/10.1038/nature10177
  • Sharma R, Anguela XM, Doyon Y, Wechsler T, DeKelver RC, Sproul S, Paschon DE, Miller JC, Davidson RJ, Shivak D, et al. In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood 2015; 126(15):1777-84; PMID:26297739; http://dx.doi.org/10.1182/blood-2014-12-615492
  • Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014; 370(10):901-10; PMID:24597865; http://dx.doi.org/10.1056/NEJMoa1300662
  • Hütter G, Nowak D, Mossner M, Ganepola S, Müssig A, Allers K, Schneider T, Hofmann J, Kücherer C, Blau O, et al. Long-Term Control of HIV by CCR5 Delta32/ Delta32 Stem-Cell Transplantation. N Engl J Med 2009; 370(7):392-8
  • Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, Wang N, Lee G, Bartsevich VV, Lee YL, et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 2008; 26:808-16; PMID:18587387; http://dx.doi.org/10.1038/nbt1410
  • Bloom K, Ely A, Mussolino C, Cathomen T, Arbuthnot P. Inactivation of hepatitis B virus replication in cultured cells and in vivo with engineered transcription activator-like effector nucleases. Mol Ther 2013; 21(10):1889-97; PMID:23883864; http://dx.doi.org/10.1038/mt.2013.170
  • Rebar EJ, Huang Y, Hickey R, Nath AK, Meoli D, Nath S, Chen B, Xu L, Liang Y, Jamieson AC, et al. Induction of angiogenesis in a mouse model using engineered transcription factors. Nat Med 2002; 8(12):1427-32; PMID:12415262; http://dx.doi.org/10.1038/nm1202-795
  • Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han YC, Ogrodowski P, Crippa A, Rekhtman N, de Stanchina E, et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 2014; 516(7531):423-7; PMID:25337876; http://dx.doi.org/10.1038/nature13902
  • Ledford H. CRISPR, the disruptor. Nature 2015; 522(7554):20-4; PMID:26040877; http://dx.doi.org/10.1038/522020a
  • Gullans JEaS. Genetically enhanced Olympics are coming. Nature 2012; 487:297; PMID:22810679; http://dx.doi.org/10.1038/487297a
  • Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 2015; 6(5):363-72; PMID:25894090; http://dx.doi.org/10.1007/s13238-015-0153-5
  • Cyranoski D, Reardon S. Embryo editing sparks epic debate. Nature 2014; 520:593-4; http://dx.doi.org/10.1038/520593a

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.