892
Views
9
CrossRef citations to date
0
Altmetric
Research Papers

IL-7 suppresses osteogenic differentiation of periodontal ligament stem cells through inactivation of mitogen-activated protein kinase pathway

, , , , , , & show all
Pages 183-193 | Received 01 Aug 2016, Accepted 23 Aug 2016, Published online: 01 Nov 2016

REFERENCES

  • Catón J, Bostanci N, Remboutsika E, De Bari C, Mitsiadis TA. Future dentistry: cell therapy meets tooth and periodontal repair and regeneration. J Cell Mol Med 2011; 15:1054-65; http://dx.doi.org/10.1111/j.1582-4934.2010.01251.x
  • Zhu B, Liu Y, Li D, Jin Y. Somatic stem cell biology and periodontal regeneration. Int J Oral Maxillofac Implants 2013; 28:e494-502; PMID:24278958; http://dx.doi.org/10.11607/jomi.te30
  • Lu H, Xie C, Zhao YM, Chen FM. Translational research and therapeutic application of stem cell transplantation in periodontal regenerative medicine. Cell Transplant 2013; 22:205-29; PMID:23031442; http://dx.doi.org/10.3727/096368912X656171
  • Fujita T, Iwata T, Shiba H, Igarashi A, Hirata R, Takeda K, Mizuno N, Tsuji K, Kawaguchi H, Kato Y, Kurihara H. Identification of marker genes distinguishing human periodontal ligament cells from human mesenchymal stem cells and human gingival fibroblasts. J Periodontal Res 2007; 42:283-6; PMID:17451549; http://dx.doi.org/10.1111/j.1600-0765.2006.00944.x
  • Feng F, Akiyama K, Liu Y, Yamaza T, Wang TM, Chen JH, Wang BB, Huang GT, Wang S, Shi S. Utility of PDL progenitors for in vivo tissue regeneration: a report of 3 cases. Oral Dis 2010; 16:20-8; PMID:20355278; http://dx.doi.org/10.1111/j.1601-0825.2009.01593.x
  • Bright R, Hynes K, Gronthos S, Bartold PM. Periodontal ligament-derived cells for periodontal regeneration in animal models: a systematic review. J Periodontal Res 2015; 50:160-72; PMID:24965968; http://dx.doi.org/10.1111/jre.12205
  • Maeda H, Tomokiyo A, Koori K, Monnouchi S, Fujii S, Wada N, Kono K, Yamamoto N, Saito T, Akamine A. An in vitro evaluation of two resin-based sealers on proliferation and differentiation of human periodontal ligament cells. Int Endod J 2011; 44:425-31; PMID:21255042; http://dx.doi.org/10.1111/j.1365-2591.2010.01845.x
  • Yan XZ, Yang F, Jansen JA, de Vries RB, van den Beucken JJ. Cell-based approaches in periodontal regeneration: a systematic review and meta-analysis of periodontal defect models in animal experimental work. Tissue Eng Part B Rev 2015; 21:411-26; PMID:25929285; http://dx.doi.org/10.1089/ten.teb.2015.0049
  • Chen FM, Sun HH, Lu H, Yu Q. Stem cell-delivery therapeutics for periodontal tissue regeneration. Biomaterials 2012; 33:6320-44; PMID:22695066; http://dx.doi.org/10.1016/j.biomaterials.2012.05.048
  • Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004; 364:149-55; PMID:15246727; http://dx.doi.org/10.1016/S0140-6736(04)16627-0
  • Cha Y, Jeon M, Lee HS, Kim S, Kim SO, Lee JH, Song JS. Effects of in vitro osteogenic induction on in vivo tissue regeneration by dental pulp and periodontal ligament stem cells. J Endod 2015; 41:1462-8; PMID:26001856; http://dx.doi.org/10.1016/j.joen.2015.04.010
  • Park JC, Kim JM, Jung IH, Kim JC, Choi SH, Cho KS, Kim CS. Isolation and characterization of human periodontal ligament (PDL) stem cells (PDLSCs) from the inflamed PDLtissue: in vitro and in vivo evaluations. J Clin Periodontol 2011; 38:721-31; PMID:21449989; http://dx.doi.org/10.1111/j.1600-051X.2011.01716.x
  • Chen FM, Gao LN, Tian BM, Zhang XY, Zhang YJ, Dong GY, Lu H, Chu Q, Xu J, Yu Y, Wu RX, Yin Y, Shi S, Jin Y. Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: a randomized clinical trial. Stem Cell Res Ther 2016; 7:33; PMID:26895633; http://dx.doi.org/10.1186/s13287-016-0288-1
  • Nuñez J, Sanz-Blasco S, Vignoletti F, Muñoz F, Arzate H, Villalobos C, Nuñez L, Caffesse RG, Sanz M. Periodontal regeneration following implantation of cementum and periodontal ligament-derived cells. J Periodontal Res 2012; 47:33-44; http://dx.doi.org/10.1111/j.1600-0765.2011.01402.x
  • Trubiani O, Orsini G, Zini N, Di Iorio D, Piccirilli M, Piattelli A, Caputi S. Regenerative potential of human periodontal ligament derived stem cells on three-dimensional biomaterials: a morphological report. J Biomed Mater Res A 2008; 87:986-93; PMID:18257082; http://dx.doi.org/10.1002/jbm.a.31837
  • Parrish YK, Baez I, Milford TA, Benitez A, Galloway N, Rogerio JW, Sahakian E, Kagoda M, Huang G, Hao QL, et al. IL-7 Dependence in human B lymphopoiesis increases during progression of ontogeny from cord blood to bone marrow. J Immunol 2009; 182:4255-66; PMID:19299724; http://dx.doi.org/10.4049/jimmunol.0800489
  • Chen X, Fang L, Song S, Guo TB, Liu A, Zhang JZ. Thymic regulation of autoimmune disease by accelerated differentiation of Foxp3+ regulatory T cells through IL-7 signaling pathway. J Immunol 2009; 183:6135-44; PMID:19841165; http://dx.doi.org/10.4049/jimmunol.0901576
  • Nierste BA, Glackin CA, Kirshner J. Dkk-1 and IL-7 in plasma of patients with multiple myeloma prevent differentiation of mesenchymal stem cells into osteoblasts. Am J Blood Res 2014; 4:73-85; PMID:25755907
  • Giuliani N, Rizzoli V, Roodman GD. Multiple myeloma bone disease: pathophysiology of osteoblast inhibition. Blood 2006; 108:3992-6; PMID:16917004; http://dx.doi.org/10.1182/blood-2006-05-026112
  • Silbermann R, Roodman GD. Myeloma bone disease: pathophysiology and management. J Bone Oncol 2013; 2:59-69; PMID:26909272; http://dx.doi.org/10.1016/j.jbo.2013.04.001
  • Weitzmann MN, Roggia C, Toraldo G, Weitzmann L, Pacifici R. Increased production of IL-7 uncouples bone formation from bone resorption during estrogen deficiency. J Clin Invest 2002; 110:1643-50; PMID:12464669; http://dx.doi.org/10.1172/JCI0215687
  • Xiao G, Jiang D, Thomas P, Benson MD, Guan K, Karsenty G, Franceschi RT. MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biol Chem 2000; 275:4453-9; PMID:10660618; http://dx.doi.org/10.1074/jbc.275.6.4453
  • Li B, Sun J, Dong Z, Xue P, He X, Liao L, Yuan L, Jin Y. GCN5 modulates osteogenic differentiation of periodontal ligament stem cells through DKK1 acetylation in inflammatory microenvironment. Sci Rep 2016; 6:26542; PMID:27216891; http://dx.doi.org/10.1038/srep26542
  • Zhang C, Lu Y, Zhang L, Liu Y, Zhou Y, Chen Y, Yu H. Influence of different intensities of vibration on proliferation and differentiation of human periodontal ligament stem cells. Arch Med Sci 2015; 11:638-46; PMID:26170859; http://dx.doi.org/10.5114/aoms.2015.52370
  • Giuliani N, Colla S, Morandi F, Lazzaretti M, Sala R, Bonomini S, Grano M, Colucci S, Svaldi M, Rizzoli V. Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation. Blood 2005; 106:2472-83; PMID:15933061; http://dx.doi.org/10.1182/blood-2004-12-4986
  • Li B, Jung HJ, Kim SM, Kim MJ, Jahng JW, Lee JH. Human periodontal ligament stem cells repair mental nerve injury. Neural Regen Res 2013; 8:2827-37; PMID:25206604
  • Wei F, Liu D, Feng C, Zhang F, Yang S, Hu Y, Ding G, Wang S. microRNA-21 mediates stretch-induced osteogenic differentiation in human periodontal ligament stem cells. Stem Cells Dev 2015; 24:312-9; PMID:25203845; http://dx.doi.org/10.1089/scd.2014.0191
  • Trubiani O, Orsini G, Zini N, Di Iorio D, Piccirilli M, Piattelli A, Caputi S. Regenerative potential of human periodontal ligament derived stem cells on three-dimensional biomaterials: a morphological report. J Biomed Mater Res A 2008; 87:986-93; PMID:18257082; http://dx.doi.org/10.1002/jbm.a.31837
  • Franceschi RT, Xiao G, Jiang D, Gopalakrishnan R, Yang S, Reith E. Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connect Tissue Res 2003; 44(suppl 1):109-116; PMID:12952183; http://dx.doi.org/10.1080/03008200390152188
  • Komori T. Runx2, a multifunctional transcription factor in skeletal development. J Cell Biochem 2002; 87:1-8; PMID:12210716; http://dx.doi.org/10.1002/jcb.10276
  • Shui C, Spelsberg TC, Riggs BL, Khosla S. Changes in Runx2/Cbfa1 expression and activity during osteoblastic differentiation of human bone marrow stromal cells. J Bone Miner Res 2003; 18:213-21; PMID:12568398; http://dx.doi.org/10.1359/jbmr.2003.18.2.213
  • Artigas N, Ureña C, Rodríguez-Carballo E, Rosa JL, Ventura F. Mitogen-activated protein kinase (MAPK)-regulated interactions between Osterix and Runx2 are critical for the transcriptional osteogenic program. J Biol Chem 2014; 289:27105-17; PMID:25122769; http://dx.doi.org/10.1074/jbc.M114.576793
  • Sinha KM, Yasuda H, Zhou X, deCrombrugghe B. Osterix and NO66 histone demethylase control the chromatin of Osterix target genes during osteoblast differentiation. J Bone Miner Res 2014; 29:855-65; PMID:24115157; http://dx.doi.org/10.1002/jbmr.2103
  • Hwang JH, Byun MR, Kim AR, Kim KM, Cho HJ, Lee YH, Kim J, Jeong MG, Hwang ES, Hong JH. Extracellular matrix stiffness regulates osteogenic differentiation through MAPK activation. PLoS One 2015; 10:e0135519; PMID:26262877; http://dx.doi.org/10.1371/journal.pone.0135519
  • Zhang X, Zhou C, Zha X, Xu Z, Li L, Liu Y, Xu L, Cui L, Xu D, Zhu B. Apigenin promotes osteogenic differentiation of human mesenchymal stem cells through JNK and p38 MAPK pathways. Mol Cell Biochem 2015; 407:41-50; PMID:25994505; http://dx.doi.org/10.1007/s11010-015-2452-9
  • Iwata M, Graf L, Awaya N, Torok-Storb B. Functional interleukin-7 receptors (IL-7Rs) are expressed by marrow stromal cells: binding of IL-7 increases levels of IL-6 mRNA and secreted protein. Blood 2002; 100:1318-25; PMID:12149213; http://dx.doi.org/10.1182/blood-2002-01-0062
  • Manescu A, Giuliani A, Mohammadi S, Tromba G, Mazzoni S, Diomede F, Zini N, Piattelli A, Trubiani O. Osteogenic potential of dual blocks cultured with human periodontal ligament stem cells: in vitro and synchrotron microtomography study. J Periodontal Res 2016; 51:112-24; PMID:26094874; http://dx.doi.org/10.1111/jre.12289

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.