1,649
Views
10
CrossRef citations to date
0
Altmetric
Review

Current strategies to generate mature human induced pluripotent stem cells derived cholangiocytes and future applications

, , , , &
Pages 1-15 | Received 30 Aug 2016, Accepted 05 Jan 2016, Published online: 25 Jan 2017

REFERENCES

  • Collin de l'Hortet A, Takeishi K, Guzman-Lepe J, Handa K, Matsubara K, Fukumitsu K, Dorko K, Presnell SC, Yagi H, Soto-Gutierrez A. Liver-Regenerative Transplantation: Regrow and Reset. Am J Transplant 2016; 16:1688-1696; PMID:26699680; http://dx.doi.org/10.1111/ajt.13678
  • Gordillo M, Evans T, Gouon-Evans V. Orchestrating liver development. Development 2015; 142:2094-2108; PMID:26081571; http://dx.doi.org/10.1242/dev.114215
  • Lazaridis KN, LaRusso NF. The Cholangiopathies. Mayo Clin Proc 2015; 90:791-800; PMID:25957621; http://dx.doi.org/10.1016/j.mayocp.2015.03.017
  • Aoi T. 10th anniversary of iPS cells: the challenges that lie ahead. J Biochem 2016; 160:121-129; PMID:27387749; http://dx.doi.org/10.1093/jb/mvw044
  • Roskams T, Desmet V. Embryology of extra- and intrahepatic bile ducts, the ductal plate. Anat Rec (Hoboken) 2008; 291:628-635; PMID:18484608; http://dx.doi.org/10.1002/ar.20710
  • Antoniou A, Raynaud P, Cordi S, Zong Y, Tronche F, Stanger BZ, Jacquemin P, Pierreux CE, Clotman F, Lemaigre FP. Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9. Gastroenterology 2009; 136:2325-2333; PMID:19403103; http://dx.doi.org/10.1053/j.gastro.2009.02.051
  • Raynaud P, Carpentier R, Antoniou A, Lemaigre FP. Biliary differentiation and bile duct morphogenesis in development and disease. Int J Biochem Cell Biol 2011; 43:245-256; PMID:19735739; http://dx.doi.org/10.1016/j.biocel.2009.07.020
  • Carpentier R, Suñer RE, van Hul N, Kopp JL, Beaudry JB, Cordi S, Antoniou A, Raynaud P, Lepreux S, Jacquemin P, et al. Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes, and adult liver progenitor cells. Gastroenterology 2011; 141:1432-1438, 1438 e1431–1434; PMID:21708104; http://dx.doi.org/10.1053/j.gastro.2011.06.049
  • Li Z, White P, Tuteja G, Rubins N, Sackett S, Kaestner KH. Foxa1 and Foxa2 regulate bile duct development in mice. J Clin Invest 2009; 119:1537-1545; PMID:19436110; http://dx.doi.org/10.1172/JCI38201
  • Geisler F, Strazzabosco M. Emerging roles of Notch signaling in liver disease. Hepatology 2015; 61:382-392; PMID:24930574; http://dx.doi.org/10.1002/hep.27268
  • McCright B, Lozier J, Gridley T. A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 2002; 129:1075-1082; PMID:11861489
  • Kodama Y, Hijikata M, Kageyama R, Shimotohno K, Chiba T. The role of notch signaling in the development of intrahepatic bile ducts. Gastroenterology 2004; 127:1775-1786; PMID:15578515
  • Geisler F, Nagl F, Mazur PK, Lee M, Zimber-Strobl U, Strobl LJ, Radtke F, Schmid RM, Siveke JT. Liver-specific inactivation of Notch2, but not Notch1, compromises intrahepatic bile duct development in mice. Hepatology 2008; 48:607-616; PMID:18666240; http://dx.doi.org/10.1002/hep.22381
  • Sparks EE, Huppert KA, Brown MA, Washington MK, Huppert SS. Notch signaling regulates formation of the three-dimensional architecture of intrahepatic bile ducts in mice. Hepatology 2010; 51:1391-1400; http://dx.doi.org/10.1002/hep.23431
  • Clotman F, Lannoy VJ, Reber M, Cereghini S, Cassiman D, Jacquemin P, Roskams T, Rousseau GG, Lemaigre FP. The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development 2002; 129:1819-1828; PMID:11934848
  • Tan X, Yuan Y, Zeng G, Apte U, Thompson MD, Cieply B, Stolz DB, Michalopoulos GK, Kaestner KH, Monga SP. Beta-catenin deletion in hepatoblasts disrupts hepatic morphogenesis and survival during mouse development. Hepatology 2008; 47:1667-1679; PMID:18393386; http://dx.doi.org/10.1002/hep.22225
  • Hirose Y, Itoh T, Miyajima A. Hedgehog signal activation coordinates proliferation and differentiation of fetal liver progenitor cells. Exp Cell Res 2009; 315:2648-2657; PMID:19559697; http://dx.doi.org/10.1016/j.yexcr.2009.06.018
  • Grijalva J, Vakili K. Neonatal liver physiology. Semin Pediatr Surg 2013; 22:185-189; PMID:24331092; http://dx.doi.org/10.1053/j.sempedsurg.2013.10.006
  • Watchko JF, Lin Z. Exploring the genetic architecture of neonatal hyperbilirubinemia. Semin Fetal Neonatal Med 2010; 15:169-175; PMID:20022574; http://dx.doi.org/10.1016/j.siny.2009.11.003
  • Dennery PA, Seidman DS, Stevenson DK. Neonatal hyperbilirubinemia. N Engl J Med 2001; 344:581-590; PMID:11207355; http://dx.doi.org/10.1056/NEJM200102223440807
  • Watchko JF, Maisels MJ. Jaundice in low birthweight infants: pathobiology and outcome. Arch Dis Child Fetal Neonatal Ed 2003; 88:F455-458; PMID:14602689
  • Lester R, St Pyrek J, Little JM, Adcock EW. Diversity of bile acids in the fetus and newborn infant. J Pediatr Gastroenterol Nutr 1983; 2:355-364; PMID:6348233
  • Setchell KD, Dumaswala R, Colombo C, Ronchi M. Hepatic bile acid metabolism during early development revealed from the analysis of human fetal gallbladder bile. J Biol Chem 1988; 263:16637-16644; PMID:3182806
  • Gustafsson J. Bile acid biosynthesis during development: hydroxylation of C27-sterols in human fetal liver. J Lipid Res 1986; 27:801-806.
  • Little JM, Richey JE, Van Thiel DH, Lester R. Taurocholate pool size and distribution in the fetal rat. J Clin Invest 1979; 63:1042-1049; PMID:3772248; http://dx.doi.org/10.1172/JCI109373
  • Heubi JE, Balistreri WF, Suchy FJ. Bile salt metabolism in the first year of life. J Lab Clin Med 1982; 100:127-136; PMID:7201000
  • Henning SJ. Postnatal development: coordination of feeding, digestion, and metabolism. Am J Physiol 1981; 241:G199-214; PMID:7025659
  • Suchy FJ, Balistreri WF, Heubi JE, Searcy JE, Levin RS. Physiologic cholestasis: elevation of the primary serum bile acid concentrations in normal infants. Gastroenterology 1981; 80:1037-1041; PMID:7202962
  • Barnard JA, Ghishan FK, Wilson FA. Ontogenesis of taurocholate transport by rat ileal brush border membrane vesicles. J Clin Invest 1985; 75:869-873; PMID:2579978; http://dx.doi.org/10.1172/JCI111785
  • Roy-Chowdhury N, Wang X, Guha C, Roy-Chowdhury J. Hepatocyte-like cells derived from induced pluripotent stem cells. Hepatol Int 2016; 1-16; http://dx.doi.org/10.1007/s12072-016-9757-y
  • Soto-Gutierrez A, Kobayashi N, Rivas-Carrillo JD, Navarro-Alvarez N, Zhao D, Okitsu T, Noguchi H, Basma H, Tabata Y, Chen Y, et al. Reversal of mouse hepatic failure using an implanted liver-assist device containing ES cell-derived hepatocytes. Nat Biotechnol 2006; 24:1412-1419; PMID:17086173; http://dx.doi.org/10.1038/nbt1257
  • IBasma H, Soto-Gutiérrez A, Yannam GR, Liu L, Ito R, Yamamoto T, Ellis E, Carson SD, Sato S, Chen Y, et al. Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology 2009; 136:990-999; PMID:19026649; http://dx.doi.org/10.1053/j.gastro.2008.10.047
  • Gai H, Nguyen DM, Moon YJ, Aguila JR, Fink LM, Ward DC, Ma Y. Generation of murine hepatic lineage cells from induced pluripotent stem cells. Differentiation 2010; 79:171-181; PMID:20106584; http://dx.doi.org/10.1016/j.diff.2010.01.002
  • Hay DC, Zhao D, Ross A, Mandalam R, Lebkowski J, Cui W. Direct differentiation of human embryonic stem cells to hepatocyte-like cells exhibiting functional activities. Cloning Stem Cells 2007; 9:51-62; PMID:17386014; http://dx.doi.org/10.1089/clo.2006.0045
  • Chen YF, Tseng CY, Wang HW, Kuo HC, Yang VW, Lee OK. Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol. Hepatology 2012; 55:1193-1203; PMID:22095466; http://dx.doi.org/10.1002/hep.24790
  • Sullivan GJ, Hay DC, Park IH, Fletcher J, Hannoun Z, Payne CM, Dalgetty D, Black JR, Ross JA, Samuel K, et al. Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology 2010; 51:329-335; PMID: 19877180; http://dx.doi.org/10.1002/hep.23335
  • Hay DC, Fletcher J, Payne C, Terrace JD, Gallagher RC, Snoeys J, Black JR, Wojtacha D, Samuel K, Hannoun Z, et al. Highly efficient differentiation of hESCs to functional hepatic endoderm requires ActivinA and Wnt3a signaling. Proc Natl Acad Sci U S A 2008; 105:12301-12306; PMID:18719101; http://dx.doi.org/10.1073/pnas.0806522105
  • Song Z, Cai J, Liu Y, Zhao D, Yong J, Duo S, Song X, Guo Y, Zhao Y, Qin H, et al. Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res 2009; 19:1233-1242; PMID:19736565; http://dx.doi.org/10.1038/cr.2009.107
  • Si-Tayeb K, Noto FK, Nagaoka M, Li J, Battle MA, Duris C, North PE, Dalton S, Duncan SA. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 2010; 51:297-305; PMID:19998274; http://dx.doi.org/10.1002/hep.23354
  • Ogawa S, Surapisitchat J, Virtanen C, Ogawa M, Niapour M, Sugamori KS, Wang S, Tamblyn L, Guillemette C, Hoffmann E, et al. Three-dimensional culture and cAMP signaling promote the maturation of human pluripotent stem cell-derived hepatocytes. Development 2013; 140:3285-3296; PMID:23861064; http://dx.doi.org/10.1242/dev.090266
  • Hannan NR, Fordham RP, Syed YA, Moignard V, Berry A, Bautista R, Hanley NA, Jensen KB, Vallier L. Generation of multipotent foregut stem cells from human pluripotent stem cells. Stem Cell Reports 2013; 1:293-306; PMID:24319665; http://dx.doi.org/10.1016/j.stemcr.2013.09.003
  • Touboul T, Hannan NR, Corbineau S, Martinez A, Martinet C, Branchereau S, Mainot S, Strick-Marchand H, Pedersen R, Di Santo J, et al. Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology 2010; 51:1754-1765; PMID:20301097; http://dx.doi.org/10.1002/hep.23506
  • Dianat N, Dubois-Pot-Schneider H, Steichen C, Desterke C, Leclerc P, Raveux A, Combettes L, Weber A, Corlu A, Dubart-Kupperschmitt A. Generation of functional cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells. Hepatology 2014; 60:700-714; PMID:24715669; http://dx.doi.org/10.1002/hep.27165
  • Ogawa M, Ogawa S, Bear CE, Ahmadi S, Chin S, Li B, Grompe M, Keller G, Kamath BM, Ghanekar A. Directed differentiation of cholangiocytes from human pluripotent stem cells. Nat Biotechnol 2015; 33:853-861; PMID:26167630; http://dx.doi.org/10.1038/nbt.3294
  • Sampaziotis F, Cardoso de Brito M, Madrigal P, Bertero A, Saeb-Parsy K, Soares FA, Schrumpf E, Melum E, Karlsen TH, Bradley JA, et al. Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation. Nat Biotechnol 2015; 33:845-852; PMID:26167629; http://dx.doi.org/10.1038/nbt.3275
  • De Assuncao TM, Sun Y, Jalan-Sakrikar N, Drinane MC, Huang BQ, Li Y, Davila JI, Wang R, O'Hara SP, Lomberk GA, et al. Development and characterization of human-induced pluripotent stem cell-derived cholangiocytes. Lab Invest 2015; 95:684-696; PMID:25867762; http://dx.doi.org/10.1038/labinvest.2015.51
  • Takayama K, Mitani S, Nagamoto Y, Sakurai F, Tachibana M, Taniguchi Y, Sekiguchi K, Mizuguchi H. Laminin 411 and 511 promote the cholangiocyte differentiation of human induced pluripotent stem cells. Biochem Biophys Res Commun 2016; 474:91-96; PMID:27103433; http://dx.doi.org/10.1016/j.bbrc.2016.04.075
  • Norrman K, Strombeck A, Semb H, Stahlberg A. Distinct gene expression signatures in human embryonic stem cells differentiated towards definitive endoderm at single-cell level. Methods 2013; 59:59-70; PMID:22503774; http://dx.doi.org/10.1016/j.ymeth.2012.03.030
  • Lemaigre FP. Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterology 2009; 137:62-79; http://dx.doi.org/10.1053/j.gastro.2009.03.035; PMID:19328801
  • Ludtke TH, Christoffels VM, Petry M, Kispert A. Tbx3 promotes liver bud expansion during mouse development by suppression of cholangiocyte differentiation. Hepatology 2009; 49:969-978; PMID:19140222; http://dx.doi.org/10.1002/hep.22700
  • Gualdi R, Bossard P, Zheng M, Hamada Y, Coleman JR, Zaret KS. Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev 1996; 10:1670-1682; PMID:8682297
  • Kamiya A, Kakinuma S, Onodera M, Miyajima A, Nakauchi H. Prospero-related homeobox 1 and liver receptor homolog 1 coordinately regulate long-term proliferation of murine fetal hepatoblasts. Hepatology 2008; 48:252-264; PMID:18571787; http://dx.doi.org/10.1002/hep.22303
  • Suzuki A, Iwama A, Miyashita H, Nakauchi H, Taniguchi H. Role for growth factors and extracellular matrix in controlling differentiation of prospectively isolated hepatic stem cells. Development 2003; 130:2513-2524; PMID:12702664
  • Van Eyken P, Sciot R, Callea F, Van der Steen K, Moerman P, Desmet VJ. The development of the intrahepatic bile ducts in man: a keratin-immunohistochemical study. Hepatology 1988; 8:1586-1595; PMID:2461337
  • Boyer JL. Bile formation and secretion. Compr Physiol 2013; 3:1035-1078; http://dx.doi.org/10.1002/cphy.c120027
  • Marin JJ, Macias RI, Briz O, Banales JM, Monte MJ. Bile acids in physiology, pathology and pharmacology. Curr Drug Metab 2015; 17:4-29; PMID:26526836
  • Feranchak AP, Fitz JG. Thinking outside the cell: the role of extracellular adenosine triphosphate in bile formation. Gastroenterology 2007; 133:1726-1728; PMID:17983816; http://dx.doi.org/10.1053/j.gastro.2007.09.050
  • Layden TJ, Boyer JL. Influence of bile acids on bile canalicular membrane morphology and the lobular gradient in canalicular size. Lab Invest 1978; 39:110-119; PMID:23897680
  • Alpini G, Baiocchi L, Glaser S, Ueno Y, Marzioni M, Francis H, Phinizy JL, Angelico M, Lesage G. Ursodeoxycholate and tauroursodeoxycholate inhibit cholangiocyte growth and secretion of BDL rats through activation of PKC alpha. Hepatology 2002; 35:1041-1052; PMID:11981754; http://dx.doi.org/10.1053/jhep.2002.32712
  • Tabibian JH, Masyuk AI, Masyuk TV, O'Hara SP, LaRusso NF. Physiology of cholangiocytes. Compr Physiol 2013; 3:541-565; PMID:23720296; http://dx.doi.org/10.1002/cphy.c120019
  • Gewartowska M, Olszewski WL. Hepatocyte transplantation-biology and application. Ann Transplant 2007; 12:27-36; PMID:17953140
  • Lozano E, Sanchez-Vicente L, Monte MJ, Herraez E, Briz O, Banales JM, Marin JJ, Macias RI. Cocarcinogenic effects of intrahepatic bile acid accumulation in cholangiocarcinoma development. Mol Cancer Res 2014; 12:91-100; http://dx.doi.org/10.1158/1541-7786.MCR-13-0503;PMID: 24255171
  • Alpini G, Ueno Y, Glaser SS, Marzioni M, Phinizy JL, Francis H, Lesage G. Bile acid feeding increased proliferative activity and apical bile acid transporter expression in both small and large rat cholangiocytes. Hepatology 2001; 34:868-876; PMID:11679956; http://dx.doi.org/10.1053/jhep.2001.28884
  • Keitel V, Haussinger D. TGR5 in the biliary tree. Dig Dis 2011; 29:45-47; PMID:21691103; http://dx.doi.org/10.1159/000324127
  • Jung D, York JP, Wang L, Yang C, Zhang A, Francis HL, Webb P, McKeehan WL, Alpini G, Lesage GD, et al. FXR-induced secretion of FGF15/19 inhibits CYP27 expression in cholangiocytes through p38 kinase pathway. Pflugers Arch 2014; 466:1011-1019; PMID:24068255; http://dx.doi.org/10.1007/s00424-013-1364-3
  • Miyazaki T, Futaki S, Suemori H, Taniguchi Y, Yamada M, Kawasaki M, Hayashi M, Kumagai H, Nakatsuji N, Sekiguchi K, et al. Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat Commun 2012; 3:1236; PMID:23212365; http://dx.doi.org/10.1038/ncomms2231
  • Tanimizu N, Miyajima A, Mostov KE. Liver progenitor cells develop cholangiocyte-type epithelial polarity in three-dimensional culture. Mol Biol Cell 2007; 18:1472-1479; PMID:17314404; http://dx.doi.org/10.1091/mbc.E06-09-0848
  • Tanimizu N, Kikkawa Y, Mitaka T, Miyajima A. alpha1- and alpha5-containing laminins regulate the development of bile ducts via beta1 integrin signals. J Biol Chem 2012; 287:28586-28597; PMID:22761447; http://dx.doi.org/10.1074/jbc.M112.350488
  • Shiojiri N, Sugiyama Y. Immunolocalization of extracellular matrix components and integrins during mouse liver development. Hepatology 2004; 40:346-355; PMID:15368439; http://dx.doi.org/10.1002/hep.20303
  • Pisarello MJ, Loarca L, Ivanics T, Morton L, LaRusso N. MicroRNAs in the Cholangiopathies: Pathogenesis, Diagnosis, and Treatment. J Clin Med 2015; 4:1688-1712; PMID:26343736; http://dx.doi.org/10.3390/jcm4091688
  • Cohen TS, Prince A. Cystic fibrosis: a mucosal immunodeficiency syndrome. Nat Med 2012; 18:509-519; PMID:22481418; http://dx.doi.org/10.1038/nm.2715
  • Tietz Bogert PS, Huang BQ, Gradilone SA, Masyuk TV, Moulder GL, Ekker SC, Larusso NF. The zebrafish as a model to study polycystic liver disease. Zebrafish 2013; 10:211-217; PMID:23668934; http://dx.doi.org/10.1089/zeb.2012.0825
  • Munoz-Garrido P, Marin JJ, Perugorria MJ, Urribarri AD, Erice O, Sáez E, Úriz M, Sarvide S, Portu A, Concepcion AR, et al. Ursodeoxycholic acid inhibits hepatic cystogenesis in experimental models of polycystic liver disease. J Hepatol 2015; 63:952-961; PMID:26044126; http://dx.doi.org/10.1016/j.jhep.2015.05.023
  • Ningappa M, Min J, Higgs BW, Ashokkumar C, Ranganathan S, Sindhi R. Genome-wide association studies in biliary atresia. Wiley Interdiscip Rev Syst Biol Med 2015; 7:267-273; PMID:25963027; http://dx.doi.org/10.1002/wsbm.1303
  • Mezina A, Karpen SJ. Genetic contributors and modifiers of biliary atresia. Dig Dis 2015; 33:408-414; PMID:26045276; http://dx.doi.org/10.1159/000371694
  • Pollheimer MJ, Fickert P. Animal models in primary biliary cirrhosis and primary sclerosing cholangitis. Clin Rev Allergy Immunol 2015; 48:207-217; PMID:25172178; http://dx.doi.org/10.1007/s12016-014-8442-y
  • Katsumi T, Tomita K, Leung PS, Yang GX, Gershwin ME, Ueno Y. Animal models of primary biliary cirrhosis. Clin Rev Allergy Immunol 2015; 48:142-153; PMID:25771770; http://dx.doi.org/10.1007/s12016-015-8482-y
  • Lowe R, Afdhal N, Anderson C. Epidemiology, pathogenesis, and classification of cholangiocarcinoma, <http://www.uptodate.com/contents/epidemiology-pathogenesis-and-classification-of-cholangiocarcinoma 2016
  • Uddin MH, Choi MH, Kim WH, Jang JJ, Hong ST. Involvement of PSMD10, CDK4, and tumor suppressors in development of intrahepatic cholangiocarcinoma of syrian golden hamsters induced by clonorchis sinensis and n-Nitrosodimethylamine. PLoS Negl Trop Dis 2015; 9:e0004008; http://dx.doi.org/10.1371/journal.pntd.0004008
  • Yamada D, Rizvi S, Razumilava N, Bronk SF, Davila JI, Champion MD, Borad MJ, Bezerra JA, Chen X, Gores GJ. IL-33 facilitates oncogene-induced cholangiocarcinoma in mice by an interleukin-6-sensitive mechanism. Hepatology 2015; 61:1627-1642; http://dx.doi.org/10.1002/hep.27687
  • Mu X, Pradere JP, Affò S, Dapito DH, Friedman R, Lefkovitch JH, Schwabe RF. Epithelial transforming growth factor-beta signaling does not contribute to liver fibrosis but protects mice from cholangiocarcinoma. Gastroenterology 2016; 150:720-733; PMID:26627606; http://dx.doi.org/10.1053/j.gastro.2015.11.039
  • Gerbal-Chaloin S, Funakoshi N, Caillaud A, Gondeau C, Champon B, Si-Tayeb K. Human induced pluripotent stem cells in hepatology: beyond the proof of concept. Am J Pathol 2014; 184:332-347; PMID:24269594; http://dx.doi.org/10.1016/j.ajpath.2013.09.026
  • Navarro-Alvarez N, Soto-Gutierrez A, Chen Y, Caballero-Corbalan J, Hassan W, Kobayashi S, Kondo Y, Iwamuro M, Yamamoto K, Kondo E, et al. Intramuscular transplantation of engineered hepatic tissue constructs corrects acute and chronic liver failure in mice. J Hepatol 2010; 52:211-219; PMID:20022655; http://dx.doi.org/10.1016/j.jhep.2009.11.019
  • Olszewski WL, Charysz A, Gewartowska M, Nagui ME. Intrasplenic transplanted adult rat isolated hepatocyte fraction but not cholangiocytes forms bile canaliculi. Transplant Proc 2014; 46:2894-2896; PMID:25380945; http://dx.doi.org/10.1016/j.transproceed.2014.09.067
  • Baptista PM, Siddiqui MM, Lozier G, Rodriguez SR, Atala A, Soker S. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 2011; 53:604-617; PMID:21274881; http://dx.doi.org/10.1002/hep.24067
  • Soto-Gutierrez A, Zhang L, Medberry C, Fukumitsu K, Faulk D, Jiang H, Reing J, Gramignoli R, Komori J, Ross M, et al. A whole-organ regenerative medicine approach for liver replacement. Tissue Eng Part C Methods 2011; 17:677-686; PMID:21375407; http://dx.doi.org/10.1089/ten.tec.2010.0698
  • Alkhouri N, Zein NN. Three-dimensional printing and pediatric liver disease. Curr Opin Pediatr 2016; 28:626-630; PMID:27328182; http://dx.doi.org/10.1097/MOP.0000000000000395
  • Ma X, Qu X, Zhu W, Li YS, Yuan S, Zhang H, Liu J, Wang P, Lai CS, Zanella F, et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci U S A 2016; 113:2206-2211; PMID:26858399; http://dx.doi.org/10.1073/pnas.1524510113
  • Mussbach F, Dahmen U, Dirsch O, Settmacher U. [Liver engineering as a new source of donor organs: A systematic review]. Chirurg 20'16; 87:504-513; PMID:25986672; http://dx.doi.org/10.1007/s00104-015-0015-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.