8,139
Views
1
CrossRef citations to date
0
Altmetric
Review

Embryonic skin development and repair

, , , , , , , , & show all
Pages 46-63 | Received 24 Aug 2017, Accepted 21 Dec 2017, Published online: 15 Feb 2018

REFERENCES

  • Fuchs E. Scratching the surface of skin development. Nature. 2007; 445(7130):834-42. doi:10.1038/nature05659. PMID:17314969
  • Rowlatt U. Intrauterine wound healing in a 20 week human fetus. Virchows Archiv. 1979; 381(3):353-361. doi:10.1007/BF00432477. PMID:155931
  • Adzick N, Longaker M. Characteristics of fetal repair. Fetal Wound Healing. New York, NY: Elsevier; 1992: p. 53-70
  • Rinn JL, Wang JK, Allen N, Brugmann SA, Mikels AJ, Liu H, Ridky TW, Stadler HS, Nusse R, Helms JA, et al. A dermal HOX transcriptional program regulates site-specific epidermal fate. Genes Dev. 2008; 22(3):303-7. doi:10.1101/gad.1610508. PMID:18245445
  • Koster MI, Roop DR. Mechanisms regulating epithelial stratification. Annu Rev Cell Dev Biol. 2007; 23:93-113. doi:10.1146/annurev.cellbio.23.090506.123357. PMID:17489688
  • Arnold SJ, Robertson EJ. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol. 2009; 10(2):91-103. doi:10.1038/nrm2618. PMID:19129791
  • Stern CD. Neural induction: old problem, new findings, yet more questions. Development. 2005; 132(9):2007-21. doi:10.1242/dev.01794. PMID:15829523
  • MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009; 17(1):9-26. doi:10.1016/j.devcel.2009.06.016. PMID:19619488
  • Bottcher RT, Niehrs C. Fibroblast growth factor signaling during early vertebrate development. Endocr Rev. 2005; 26(1):63-77. doi:10.1210/er.2003-0040. PMID:15689573
  • Bleuming SA, He XC, Kodach LL, Hardwick JC, Koopman FA, Ten Kate FJ, van Deventer SJ, Hommes DW, Peppelenbosch MP, Offerhaus GJ, et al. Bone morphogenetic protein signaling suppresses tumorigenesis at gastric epithelial transition zones in mice. Cancer Res. 2007; 67(17):8149-55. doi:10.1158/0008-5472.CAN-06-4659. PMID:17804727
  • Moll R, Moll I, Wiest W. Changes in the pattern of cytokeratin polypeptides in epidermis and hair follicles during skin development in human fetuses. Differentiation. 1982; 23(2):170-8. doi:10.1111/j.1432-0436.1982.tb01280.x. PMID:6187618
  • M'Boneko V, Merker HJ. Development and morphology of the periderm of mouse embryos (days 9–12 of gestation). Acta Anatomica. 1988; 133(4):325-36. doi:10.1159/000146662. PMID:3227794
  • Byrne C, Tainsky M, Fuchs E. Programming gene expression in developing epidermis. Development. 1994; 120(9):2369-83. PMID:7525178
  • Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, Tabin C, Sharpe A, Caput D, Crum C, et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature. 1999; 398(6729):714-8. doi:10.1038/19539. PMID:10227294
  • Romano RA, Birkaya B, Sinha S. A functional enhancer of keratin14 is a direct transcriptional target of deltaNp63. J Invest Dermatol. 2007; 127(5):1175-86. doi:10.1038/sj.jid.5700652. PMID:17159913
  • Morasso MI, Tomic-Canic M. Epidermal stem cells: the cradle of epidermal determination, differentiation and wound healing. Biologie Cellulaire. 2005; 97(3):173-83. doi:10.1042/BC20040098
  • Mikkola ML. Genetic basis of skin appendage development. in Seminars in cell & developmental biology. Amsterdam, Netherlands: Elsevier; 2007
  • Liu S, Zhang H, Duan E. Epidermal development in mammals: key regulators, signals from beneath, and stem cells. Int J Mol Sci. 2013; 14(6):10869-95. doi:10.3390/ijms140610869. PMID:23708093
  • Forni MF, Trombetta-Lima M, Sogayar MC. Stem cells in embryonic skin development. Biol Res. 2012; 45(3):215-22. doi:10.4067/S0716-97602012000300003. PMID:23283431
  • Benitah SA, Frye M. Stem cells in ectodermal development. Journal of molecular medicine. 2012; 90(7):783-790. doi:10.1007/s00109-012-0908-x. PMID:22570240
  • Lechler T, Fuchs E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature. 2005; 437(7056):275-80. doi:10.1038/nature03922. PMID:16094321
  • Smart IH. Variation in the plane of cell cleavage during the process of stratification in the mouse epidermis. British Journal of Dermatology, 1970; 82(3):276-82. doi:10.1111/j.1365-2133.1970.tb12437.x. PMID:5441760
  • Koster MI, Dai D, Marinari B, Sano Y, Costanzo A, Karin M, Roop DR. p63 induces key target genes required for epidermal morphogenesis. Proc Natl Acad Sci USA. 2007; 104(9):3255-60. doi:10.1073/pnas.0611376104. PMID:17360634
  • Blanpain C, Lowry WE, Pasolli HA, Fuchs E. Canonical notch signaling functions as a commitment switch in the epidermal lineage. Genes and Development. 2006; 20(21):3022-35. doi:10.1101/gad.1477606. PMID:17079689
  • Schmidt‐Ullrich R, Paus R. Molecular principles of hair follicle induction and morphogenesis. Bioessays. 2005; 27(3):247-261. doi:10.1002/bies.20184. PMID:15714560
  • Stenn K, Paus R. What controls hair follicle cycling? Exp Dermatol. 1999; 8(4):229-236. doi:10.1111/j.1600-0625.1999.tb00376.x. PMID:10439219
  • Park BY, Saint-Jeannet JP. in Induction and Segregation of the Vertebrate Cranial Placodes. Williston, Vermont, US: Morgan & Claypool Life Sciences; 2010
  • Hardy MH. The secret life of the hair follicle. Trends in Genetics. 1992; 8(2):55-61. doi:10.1016/0168-9525(92)90350-D. PMID:1566372
  • Olivera-Martinez I, Thelu J, Dhouailly D. Molecular mechanisms controlling dorsal dermis generation from the somitic dermomyotome. Int J Dev Biol. 2004; 48(2–3):93-101. doi:10.1387/ijdb.15272374. PMID:15272374
  • Paus R, Müller-Röver S, Van Der Veen C MM, Eichmüller S, Ling G, Hofmann U, Foitzik K, Mecklenburg L, et al. A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J Invest Dermatol. 1999; 113(4):523-32. doi:10.1046/j.1523-1747.1999.00740.x. PMID:10504436
  • Heid HW, Werner E, Franke WW. The complement of native α-keratin polypeptides of hair-forming cells: a subset of eight polypeptides that differ from epithelial cytokeratins. Differentiation, 1986; 32(2):101-119. doi:10.1111/j.1432-0436.1986.tb00562.x. PMID:2431943
  • Lynch MH, O'Guin WM, Hardy C, Mak L, Sun TT. Acidic and basic hair/nail (“ hard”) keratins: their colocalization in upper cortical and cuticle cells of the human hair follicle and their relationship to” soft” keratins. J Cell Biol. 1986; 103(6):2593-2606. doi:10.1083/jcb.103.6.2593. PMID:2432071
  • Stark H, Breitkreutz D, Limat A, Ryle CM, Roop D, Leigh I, Fusenig N. Keratins 1 and 10 or homologues as regular constituents of inner root sheath and cuticle cells in the human hair follicle. Eur J Cell Biol. 1990; 52(2):359-372. PMID:1706998
  • Sato K, et al. Biology of sweat glands and their disorders. I. Normal sweat gland function. J Am Acad Dermatol. 1989; 20(4):537-563
  • Lu C, Fuchs E. Sweat gland progenitors in development, homeostasis, and wound repair. Cold Spring Harbor perspectives in medicine. 2014; 4(2):a015222. doi:10.1101/cshperspect.a015222. PMID:24492848
  • Fu X, Li J, Sun X, Sun T, Sheng Z. Epidermal stem cells are the source of sweat glands in human fetal skin: evidence of synergetic development of stem cells, sweat glands, growth factors, and matrix metalloproteinases. Wound Repair and Regeneration. 2005; 13(1):102-8. doi:10.1111/j.1067-1927.2005.130113.x. PMID:15659042
  • Kunisada M, Cui CY, Piao Y, Ko MS, Schlessinger D. Requirement for Shh and Fox family genes at different stages in sweat gland development. Human Molecular Genetics. 2009; 18(10):1769-78. doi:10.1093/hmg/ddp089. PMID:19270025
  • Holbrook KA. Structure and function of the developing human skin. Biochemistry and Physiology of the Skin, 1983; 1:64-101
  • Foster CA, Holbrook KA, Farr AG. Ontogeny of Langerhans cells in human embryonic and fetal skin: expression of HLA-DR and OKT-6 determinants. J Invest Dermatol. 1986; 86(3):240-243. doi:10.1111/1523-1747.ep12285201. PMID:2427603
  • Moll R, Moll I, Franke WW. Identification of Merkel cells in human skin by specific cytokeratin antibodies:: Changes of cell density and distribution in fetal and adult plantar epidermis. Differentiation, 1984; 28(2):136-154. doi:10.1111/j.1432-0436.1984.tb00277.x. PMID:6084624
  • Mascré G, Dekoninck S, Drogat B, Youssef KK, Broheé S, Sotiropoulou PA, Simons BD, Blanpain C. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature. 2012; 489(7415):257-62. doi:10.1038/nature11393. PMID:22940863
  • Halprin K. Epidermal” turnover time”–a re-examination. The British journal of dermatology, 1972; 86(1):14. doi:10.1111/j.1365-2133.1972.tb01886.x. PMID:4551262
  • Potten C, Saffhill R, Maibach H. Measurement of the transit time for cells through the epidermis and stratum corneum of the mouse and guinea‐pig. Cell proliferation, 1987; 20(5):461-472. doi:10.1111/j.1365-2184.1987.tb01355.x.
  • Fuchs E, Horsley V. More than one way to skin. Genes and Development. 2008; 22(8):976-85. doi:10.1101/gad.1645908. PMID:18413712
  • Fuchs E, Green H. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell, 1980; 19(4): p. 1033-42. doi:10.1016/0092-8674(80)90094-X. PMID:6155214
  • Kim S, Wong P, Coulombe PA. A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth. Nature. 2006; 441(7091):362-5. doi:10.1038/nature04659. PMID:16710422
  • Singer AJ, Clark RA. Cutaneous wound healing. New England journal of medicine, 1999; 341(10):738-746. doi:10.1056/NEJM199909023411006. PMID:10471461
  • Longaker MT, Gurtner GC. Introduction: wound repair. in Seminars in cell & developmental biology. Cambridge, Massachusetts, US: Academic Press; 2012
  • Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008; 453(7193):314-21. doi:10.1038/nature07039. PMID:18480812
  • Adzick NS, Longaker MT. Animal models for the study of fetal tissue repair. J Surg Res. 1991; 51(3):216-222. doi:10.1016/0022-4804(91)90097-6. PMID:1908924
  • Adzick NS, Longaker MT. Scarless fetal healing. Therapeutic implications. Annals of surgery, 1992; 215(1):3. doi:10.1097/00000658-199201000-00004. PMID:1731647
  • Lorenz HP, et al. Scarless wound repair: a human fetal skin model. Development, 1992; 114(1):253-259. PMID:1576963
  • Cass DL, Bullard KM, Sylvester KG, Yang EY, Longaker MT, Adzick NS. Wound size and gestational age modulate scar formation in fetal wound repair. J Pediatr Surg. 1997; 32(3):411-415. doi:10.1016/S0022-3468(97)90593-5. PMID:9094005
  • Longaker MT, et al. Adult skin wounds in the fetal environment heal with scar formation. Annals of surgery, 1994; 219(1):65. doi:10.1097/00000658-199401000-00011. PMID:8297179
  • Lane AT. Human fetal skin development. Pediatric dermatology, 1986; 3(6):487-491. doi:10.1111/j.1525-1470.1986.tb00656.x. PMID:3562363
  • Ferguson MW, O'Kane S. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos Trans R Soc Lond B Biol Sci. 2004; 359(1445):839-50. doi:10.1098/rstb.2004.1475. PMID:15293811
  • Liechty KW, Adzick NS, Crombleholme TM. Diminished interleukin 6 (IL-6) production during scarless human fetal wound repair. Cytokine. 2000; 12(6):671-676. doi:10.1006/cyto.1999.0598. PMID:10843743
  • Walraven M, Talhout W, Beelen RH, van Egmond M, Ulrich MM. Healthy human second‐trimester fetal skin is deficient in leukocytes and associated homing chemokines. Wound Repair and Regeneration. 2016; 24(3):533-541. doi:10.1111/wrr.12421. PMID:26873861
  • Wulff BC, Parent AE, Meleski MA, DiPietro LA, Schrementi ME, Wilgus TA. Mast cells contribute to scar formation during fetal wound healing. J Invest Dermatol. 2012; 132(2):458-465. doi:10.1038/jid.2011.324. PMID:21993557
  • Morales J, Homey B, Vicari AP, Hudak S, Oldham E, Hedrick J, Orozco R, Copeland NG, Jenkins NA, McEvoy LM, et al. CTACK, a skin-associated chemokine that preferentially attracts skin-homing memory T cells. Proceedings of the National Academy of Sciences, 1999; 96(25):14470-14475. doi:10.1073/pnas.96.25.14470.
  • Naik-Mathuria B, Gay AN, Zhu X, Yu L, Cass DL, Olutoye OO. Age-dependent recruitment of neutrophils by fetal endothelial cells: implications in scarless wound healing. J Pediatr Surg. 2007; 42(1):166-171. doi:10.1016/j.jpedsurg.2006.09.058. PMID:17208559
  • Olutoye OO, Zhu X, Cass DL, Smith CW. Neutrophil recruitment by fetal porcine endothelial cells: implications in scarless fetal wound healing. Pediatric research. 2005; 58(6):1290-1294. doi:10.1203/01.pdr.0000184326.01884.bc. PMID:16306210
  • Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008; 16(5):585-601. doi:10.1111/j.1524-475X.2008.00410.x. PMID:19128254
  • Eslami A, Gallant-Behm CL, Hart DA, Wiebe C, Honardoust D, Gardner H, Häkkinen L, Larjava HS. Expression of integrin αvβ6 and TGF-β in scarless vs scar-forming wound healing. Journal of Histochemistry & Cytochemistry. 2009; 57(6):543-557. doi:10.1369/jhc.2009.952572.
  • Hsu M, Peled ZM, Chin GS, Liu W, Longaker MT. Ontogeny of expression of transforming growth factor-beta 1 (TGF-beta 1), TGF-beta 3, and TGF-beta receptors I and II in fetal rat fibroblasts and skin. Plastic and reconstructive surgery. 2001; 107(7):1787-94; discussion 1795–6. doi:10.1097/00006534-200106000-00023. PMID:11391201
  • Longaker MT, Bouhana KS, Harrison MR, Danielpour D, Roberts AB, Banda MJ. Wound healing in the fetus. Wound Repair and Regeneration, 1994; 2(2):104-112. doi:10.1046/j.1524-475X.1994.20204.x. PMID:17134379
  • Soo C, Hu FY, Zhang X, Wang Y, Beanes SR, Lorenz HP, Hedrick MH, Mackool RJ, Plaas A, Kim SJ, et al. Differential expression of fibromodulin, a transforming growth factor-β modulator, in fetal skin development and scarless repair. The American journal of pathology. 2000; 157(2):423-433. doi:10.1016/S0002-9440(10)64555-5. PMID:10934147
  • Caniggia I, Mostachfi H, Winter J, Gassmann M, Lye SJ, Kuliszewski M, Post M. Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFβ;3. J Clin Invest. 2000; 105(5):577. doi:10.1172/JCI8316. PMID:10712429
  • Whitby DJ, Ferguson MW. Immunohistochemical localization of growth factors in fetal wound healing. Developmental biology, 1991; 147(1):207-215. doi:10.1016/S0012-1606(05)80018-1. PMID:1879607
  • Ornitz DM, Itoh N. Fibroblast growth factors. Genome biology. 2001; 2(3):reviews3005. 1. doi:10.1186/gb-2001-2-3-reviews3005. PMID:11276432
  • Dang CM, Beanes SR, Soo C, Ting K, Benhaim P, Hedrick MH, Lorenz HP. Decreased expression of fibroblast and keratinocyte growth factor isoforms and receptors during scarless repair. Plastic and reconstructive surgery. 2003; 111(6):1969-1979. doi:10.1097/01.PRS.0000054837.47432.E7. PMID:12711959
  • Peled ZM, Rhee SJ, Hsu M, Chang J, Krummel TM, Longaker MT. The ontogeny of scarless healing II: EGF and PDGF-B gene expression in fetal rat skin and fibroblasts as a function of gestational age. Ann Plast Surg. 2001; 47(4):417-424. doi:10.1097/00000637-200110000-00010. PMID:11601578
  • Ihara S, Motobayashi Y, Nagao E, Kistler A. Ontogenetic transition of wound healing pattern in rat skin occurring at the fetal stage. Development. 1990; 110(3):671-680. PMID:2088714
  • Colwell AS, Beanes SR, Soo C, Dang C, Ting K, Longaker MT, Atkinson JB, Lorenz HP. Increased angiogenesis and expression of vascular endothelial growth factor during scarless repair. Plast Reconstr Surg. 2005; 115(1):204-212. PMID:15622252
  • Satish L, Kathju S. Cellular and molecular characteristics of scarless versus fibrotic wound healing. Dermatol Res Pract. 2010; 2010. doi:10.1155/2010/790234. PMID:21253544
  • Liechty KW, Crombleholme TM, Cass DL, Martin B, Adzick NS. Diminished interleukin-8 (IL-8) production in the fetal wound healing response. J Surg Res. 1998; 77(1):80-84. doi:10.1006/jsre.1998.5345. PMID:9698538
  • Couper KN, Blount DG, Riley EM. IL-10: the master regulator of immunity to infection. J Immunol. 2008; 180(9):5771-5777. doi:10.4049/jimmunol.180.9.5771. PMID:18424693
  • Peranteau WH, Zhang L, Muvarak N, Badillo AT, Radu A, Zoltick PW, Liechty KW. IL-10 overexpression decreases inflammatory mediators and promotes regenerative healing in an adult model of scar formation. J Invest Dermatol. 2008; 128(7):1852-1860. doi:10.1038/sj.jid.5701232. PMID:18200061
  • Canesso MC, Vieira AT, Castro TB, Schirmer BG, Cisalpino D, Martins FS, Rachid MA, Nicoli JR, Teixeira MM, Barcelos LS. Skin wound healing is accelerated and scarless in the absence of commensal microbiota. J Immunol. 2014; 193(10):5171-5180. doi:10.4049/jimmunol.1400625. PMID:25326026
  • Schultz GS, Wysocki A. Interactions between extracellular matrix and growth factors in wound healing. Wound repair and regeneration. 2009; 17(2):153-162. doi:10.1111/j.1524-475X.2009.00466.x. PMID:19320882
  • Merkel JR, DiPaolo BR, Hallock GG, Rice DC. Type I and type III collagen content of healing wounds in fetal and adult rats. Proc Soc Exp Biol Med. 1988; 187(4):493-497. doi:10.3181/00379727-187-42694. PMID:3353398
  • Burd DA, Longaker MT, Adzick NS, Harrison MR, Ehrlich HP. Foetal wound healing in a large animal model: the deposition of collagen is confirmed. British journal of plastic surgery, 1990; 43(5):571-577. doi:10.1016/0007-1226(90)90122-G. PMID:2224353
  • Longaker MT, Whitby DJ, Adzick NS, Crombleholme TM, Langer JC, Duncan BW, Bradley SM, Stern R, Ferguson MW, Harrison MR. Studies in fetal wound healing VI. Second and early third trimester fetal wounds demonstrate rapid collagen deposition without scar formation. J Pediatr Surg. 1990; 25(1):63-69. doi:10.1016/S0022-3468(05)80165-4. PMID:2299547
  • Larson BJ, Longaker MT, Lorenz HP. Scarless fetal wound healing: a basic science review. Plastic and reconstructive surgery. 2010; 126(4):1172. doi:10.1097/PRS.0b013e3181eae781. PMID:20885241
  • Oerther S, Payan E, Lapicque F, Presle N, Hubert P, Muller S, Netter P. Hyaluronate-alginate combination for the preparation of new biomaterials: investigation of the behaviour in aqueous solutions. Biochimica et Biophysica Acta (BBA)-General Subjects, 1999; 1426(1):185-194. doi:10.1016/S0304-4165(98)00155-X.
  • Shepard S, Becker H, Hartmann JX. Using hyaluronic acid to create a fetal-like environment in vitro. Annals of plastic surgery, 1996; 36(1):65-69. doi:10.1097/00000637-199601000-00013. PMID:8722987
  • Longaker MT, Chiu ES, Adzick NS, Stern M, Harrison MR, Stern R. Studies in fetal wound healing. V. A prolonged presence of hyaluronic acid characterizes fetal wound fluid. Annals of surgery, 1991; 213(4):292.
  • Mast BA, Flood LC, Haynes JH, DePalma RL, Cohen IK, Diegelmann RF, Krummel TM. Hyaluronic acid is a major component of the matrix of fetal rabbit skin and wounds: implications for healing by regeneration. Matrix, 1991; 11(1):63-68. doi:10.1016/S0934-8832(11)80228-3. PMID:2027330
  • Mast BA, Diegelmann RF, Krummel TM, Cohen IK. Hyaluronic acid modulates proliferation, collagen and protein synthesis of cultured fetal fibroblasts. Matrix, 1993; 13(6):441-446. doi:10.1016/S0934-8832(11)80110-1. PMID:8309423
  • Kennedy CI, Diegelmann RF, Haynes JH, Yager DR. Proinflammatory cytokines differentially regulate hyaluronan synthase isoforms in fetal and adult fibroblasts. J Pediatr Surg. 2000; 35(6):874-879. doi:10.1053/jpsu.2000.6869. PMID:10873029
  • West DC, Shaw DM, Lorenz P, Adzick NS, Longaker MT. Fibrotic healing of adult and late gestation fetal wounds correlates with increased hyaluronidase activity and removal of hyaluronan. The international journal of biochemistry & cell biology, 1997; 29(1):201-210. doi:10.1016/S1357-2725(96)00133-1.
  • Alaish SM, Yager D, Diegelmann RF, Cohen IK. Biology of fetal wound healing: hyaluronate receptor expression in fetal fibroblasts. J Pediatr Surg. 1994; 29(8):1040-1043. doi:10.1016/0022-3468(94)90275-5. PMID:7525917
  • Longaker MT, Whitby DJ, Ferguson MW, Harrison MR, Crombleholme TM, Langer JC, Cochrum KC, Verrier ED, Stern R. Studies in fetal wound healing: III. Early deposition of fibronectin distinguishes fetal from adult wound healing. J Pediatr Surg. 1989; 24(8):799-805
  • Whitby DJ, Longaker MT, Harrison MR, Adzick NS, Ferguson MW. Rapid epithelialisation of fetal wounds is associated with the early deposition of tenascin. J Cell Sci. 1991; 99(3):583-586. PMID:1719005
  • Whitby D, Ferguson M. The extracellular matrix of lip wounds in fetal, neonatal and adult mice. Development, 1991; 112(2):651-668. PMID:1724421
  • Longaker MT, Whitby DJ, Jennings RW, Duncan BW, Ferguson MW, Harrison MR, Adzick NS. Fetal diaphragmatic wounds heal with scar formation. J Surg Res. 1991; 50(4):375-385. doi:10.1016/0022-4804(91)90206-2. PMID:2020189
  • Cass DL, Bullard KM, Sylvester KG, Yang EY, Sheppard D, Herlyn M, Adzick NS. Epidermal integrin expression is upregulated rapidly in human fetal wound repair. J Pediatr Surg. 1998; 33(2):312-316. doi:10.1016/S0022-3468(98)90453-5. PMID:9498408
  • Beanes SR, Dang C, Soo C, Wang Y, Urata M, Ting K, Fonkalsrud EW, Benhaim P, Hedrick MH, Atkinson JB. Down-regulation of decorin, a transforming growth factor–beta modulator, is associated with scarless fetal wound healing. J Pediatr Surg. 2001; 36(11):1666-1671. doi:10.1053/jpsu.2001.27946. PMID:11685698
  • Dang CM, Beanes SR, Lee H, Zhang X, Soo C, Ting K. Scarless fetal wounds are associated with an increased matrix metalloproteinase–to–tissue-derived inhibitor of metalloproteinase ratio. Plastic and reconstructive surgery. 2003; 111(7):2273-2285. doi:10.1097/01.PRS.0000060102.57809.DA. PMID:12794470
  • Brock J, Midwinter K, Lewis J, Martin P. Healing of incisional wounds in the embryonic chick wing bud: characterization of the actin purse-string and demonstration of a requirement for Rho activation. J Cell Biol. 1996; 135(4):1097-1107. doi:10.1083/jcb.135.4.1097. PMID:8922389
  • Martin P, Lewis J. Actin cables and epidermal movement in embryonic wound healing. Nature. 1992; 360(6400):179-183. doi:10.1038/360179a0. PMID:1436096
  • Nodder S, Martin P. Wound healing in embryos:a review. Anatomy and embryology. 1997; 195(3):215-228. doi:10.1007/s004290050041. PMID:9084820
  • Estes JM, Vande Berg JS, Adzick NS, MacGillivray TE, Desmoulière A, Gabbiani G. Phenotypic and functional features of myofibroblasts in sheep fetal wounds. Differentiation. 1994; 56(3):173-181. doi:10.1046/j.1432-0436.1994.5630173.x. PMID:8034132
  • Bayat A, McGrouther DA. Clinical management of skin scarring. SKINmed: Dermatology for the Clinician. 2005; 4(3):165-173. doi:10.1111/j.1540-9740.2005.02507.x.
  • Mustoe TA, Cooter RD, Gold MH, Hobbs FD, Ramelet AA, Shakespeare PG, Stella M, Téot L, Wood FM, Ziegler UE, et al. International clinical recommendations on scar management. Plastic and reconstructive surgery. 2002; 110(2):560-571. doi:10.1097/00006534-200208000-00031. PMID:12142678
  • Meier K, Nanney LB. Emerging new drugs for scar reduction. Expert opinion on emerging drugs. 2006; 11(1):39-47. doi:10.1517/14728214.11.1.39. PMID:16503825
  • Franz MG, Steed DL, Robson MC. Optimizing healing of the acute wound by minimizing complications. Current problems in surgery. 2007; 44(11):691-763. doi:10.1067/j.cpsurg.2007.07.001. PMID:18036992
  • Batra R. Surgical techniques for scar revision. Skin therapy letter. 2005; 10(4):4-7. PMID:15986081
  • Occleston NL, O'Kane S, Goldspink N, Ferguson MW. New therapeutics for the prevention and reduction of scarring. Drug discovery today. 2008; 13(21):973-981. doi:10.1016/j.drudis.2008.08.009. PMID:18824245
  • Yates CC, Bodnar R, Wells A. Matrix control of scarring. Cell Mol Life Sci. 2011; 68(11):1871-1881. doi:10.1007/s00018-011-0663-0. PMID:21390544
  • Debels H, Hamdi M, Abberton K, Morrison W. Dermal matrices and bioengineered skin substitutes: a critical review of current options. Plastic and reconstructive surgery Global open. 2015; 3(1). doi:10.1097/GOX.0000000000000219. PMID:25674365
  • Hu M, Sabelman EE, Cao Y, Chang J, Hentz VR. Three‐dimensional hyaluronic acid grafts promote healing and reduce scar formation in skin incision wounds. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2003; 67(1):586-592. doi:10.1002/jbm.b.20001.
  • Degen KE, Gourdie RG. Embryonic wound healing: a primer for engineering novel therapies for tissue repair. Birth Defects Res C Embryo Today. 2012; 96(3):258-70. doi:10.1002/bdrc.21019. PMID:23109321
  • Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007; 25(10):2648-59. doi:10.1634/stemcells.2007-0226. PMID:17615264
  • Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, Shrayer D, Carson P. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Engineering. 2007; 13(6):1299-312. doi:10.1089/ten.2006.0278. PMID:17518741
  • Hemphill C, Stavoe K, Khalpey Z. First in man: amniotic stem cell injection promotes scar remodeling and healing processes in late-stage fibrosis. Int J Cardiol. 2014; 174(2):442. doi:10.1016/j.ijcard.2014.04.023. PMID:24768371
  • Huang SH, Wu SH, Chang KP, Lin CH, Chang CH, Wu YC, Lee SS, Lin SD, Lai CS. Alleviation of neuropathic scar pain using autologous fat grafting. Annals of plastic surgery. 2015; 74:S99-S104. doi:10.1097/SAP.0000000000000462. PMID:25695456
  • Balkin DM, Samra S, Steinbacher DM. Immediate fat grafting in primary cleft lip repair. Journal of Plastic, Reconstructive & Aesthetic Surgery. 2014; 67(12):1644-1650. doi:10.1016/j.bjps.2014.08.049.
  • Ribuffo D, Atzeni M, Guerra M, Bucher S, Politi C, Deidda M, Atzori F, Dessi M, Madeddu C, Lay G. Treatment of irradiated expanders: protective lipofilling allows immediate prosthetic breast reconstruction in the setting of postoperative radiotherapy. Aesthetic plastic surgery. 2013; 37(6):1146-1152. doi:10.1007/s00266-013-0221-2. PMID:24114295
  • Zellner EG, Pfaff MJ, Steinbacher DM. Fat grafting in primary cleft lip repair. Plastic and reconstructive surgery. 2015; 135(5):1449-1453. doi:10.1097/PRS.0000000000001187. PMID:25919258
  • Bruno A, Delli Santi G, Fasciani L, Cempanari M, Palombo M, Palombo P. Burn scar lipofilling: immunohistochemical and clinical outcomes. J Craniofac Surg. 2013; 24(5):1806-1814. doi:10.1097/SCS.0b013e3182a148b9. PMID:24036785
  • Maione L, Memeo A, Pedretti L, Verdoni F, Lisa A, Bandi V, Giannasi S, Vinci V, Mambretti A, Klinger M. Autologous fat graft as treatment of post short stature surgical correction scars. Injury. 2014; 45:S126-S132. doi:10.1016/j.injury.2014.10.036. PMID:25457332
  • Spiekman M, van Dongen JA, Willemsen JC, Hoppe DL, van der Lei B, Harmsen MC. The power of fat and its adipose‐derived stromal cells: emerging concepts for fibrotic scar treatment. Journal of Tissue Engineering and Regenerative Medicine. 2017; 11(11):3220–3235. doi:10.1002/term.2213
  • Nauta A, Seidel C, Deveza L, Montoro D, Grova M, Ko SH, Hyun J, Gurtner GC, Longaker MT, Yang F. Adipose-derived stromal cells overexpressing vascular endothelial growth factor accelerate mouse excisional wound healing. Mol Ther. 2013; 21(2):445-55. doi:10.1038/mt.2012.234. PMID:23164936
  • Liu W, Cao Y, Longaker MT. Gene therapy of scarring: a lesson learned from fetal scarless wound healing. Yonsei Med J. 2001; 42(6):634-45. doi:10.3349/ymj.2001.42.6.634. PMID:11754147
  • Liechty KW, Kim HB, Adzick NS, Crombleholme TM. Fetal wound repair results in scar formation in interleukin-10–deficient mice in a syngeneic murine model of scarless fetal wound repair. J Pediatr Surg. 2000; 35(6):866-873. doi:10.1053/jpsu.2000.6868. PMID:10873028
  • Aarabi S, Bhatt KA, Shi Y, Paterno J, Chang EI, Loh SA, Holmes JW, Longaker MT, Yee H, Gurtner GC. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. Faseb J. 2007; 21(12):3250-61. doi:10.1096/fj.07-8218com. PMID:17504973
  • Derderian CA, Bastidas N, Lerman OZ, Bhatt KA, Lin SE, Voss J, Holmes JW, Levine JP, Gurtner GC. Mechanical strain alters gene expression in an in vitro model of hypertrophic scarring. Ann Plast Surg. 2005; 55(1):69-75; discussion 75. doi:10.1097/01.sap.0000168160.86221.e9. PMID:15985794
  • Wong VW, Akaishi S, Longaker MT, Gurtner GC. Pushing back: wound mechanotransduction in repair and regeneration. J Invest Dermatol. 2011; 131(11):2186-96. doi:10.1038/jid.2011.212. PMID:21776006
  • Longaker MT, Rohrich RJ, Greenberg L, Furnas H, Wald R, Bansal V, Seify H, Tran A, Weston J, Korman JM, et al. A randomized controlled trial of the embrace advanced scar therapy device to reduce incisional scar formation. Plast Reconstr Surg. 2014; 134(3):536-46. doi:10.1097/PRS.0000000000000417. PMID:24804638
  • Lim AF, Weintraub J, Kaplan EN, Januszyk M, Cowley C, McLaughlin P, Beasley B, Gurtner GC, Longaker MT. The embrace device significantly decreases scarring following scar revision surgery in a randomized controlled trial. Plast Reconstr Surg. 2014; 133(2):398-405. doi:10.1097/01.prs.0000436526.64046.d0. PMID:24105084
  • Bullard KM, Longaker MT, Lorenz HP. Fetal wound healing: current biology. World J Surg. 2003; 27(1):54-61. doi:10.1007/s00268-002-6737-2. PMID:12557038
  • Wilgus TA, Vodovotz Y, Vittadini E, Clubbs EA, Oberyszyn TM. Reduction of scar formation in full‐thickness wounds with topical celecoxib treatment. Wound Repair Regen. 2003; 11(1):25-34. doi:10.1046/j.1524-475X.2003.11106.x. PMID:12581424
  • Kieran I, Knock A, Bush J, So K, Metcalfe A, Hobson R, Mason T, O'Kane S, Ferguson M. Interleukin‐10 reduces scar formation in both animal and human cutaneous wounds: Results of two preclinical and phase II randomized control studies. Wound Repair and Regeneration. 2013; 21(3):428-436. doi:10.1111/wrr.12043. PMID:23627460\

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.