3,937
Views
4
CrossRef citations to date
0
Altmetric
Review

The Genes Involved in Dentinogenesis

, , , , & ORCID Icon
Article: 2022373 | Received 26 Apr 2021, Accepted 05 Oct 2021, Published online: 13 Jan 2022

References

  • Meyle J, Dommisch H, Groeger S, Giacaman RA, Costalonga M, Herzberg M. The innate host response in caries and periodontitis. J Clin Periodontol. 2017;44(12):1215–19. doi:10.1111/jcpe.12781.
  • Budsamongkol T, Intarak N, Theerapanon T, Yodsanga S, Porntaveetus T, Shotelersuk V. A novel mutation in col1a2 leads to osteogenesis imperfecta/ehlers-danlos overlap syndrome with brachydactyly. Genes Dis. 2019;6(2):138–46. doi:10.1016/j.gendis.2019.03.001.
  • Andersson K, Dahllöf G, Lindahl K, Kindmark A, Grigelioniene G, Åström E, Malmgren B. Mutations in col1a1 and col1a2 and dental aberrations in children and adolescents with osteogenesis imperfecta–a retrospective cohort study. PLoS One. 2017;12(5):e0176466. doi:10.1371/journal.pone.0176466.
  • Bonaventure J, Stanescu R, Stanescu V, Allain JC, Muriel MP, Ginisty D, Maroteaux P. Type ii collagen defect in two sibs with the goldblatt syndrome, a chondrodysplasia with dentinogenesis imperfecta, and joint laxity. Am J Med Genet. 1992;44(6):738–53. doi:10.1002/ajmg.1320440607.
  • Nagai N, Nakano K, Sado Y, Naito I, Gunduz M, Tsujigiwa H, Nagatsuka H, Ninomiya Y, Siar CH. Localization of type iv collagen a 1 to a 6 chains in basement membrane during mouse molar germ development. Int J Dev Biol. 2001;45:827–31.
  • Yuan G, Chen L, Feng J, Yang G, Ni Q, Xu X, Wan C, Lindsey M, Donly KJ, MacDougall M. Dentin sialoprotein is a novel substrate of matrix metalloproteinase 9 in vitro and in vivo. Sci Rep. 2017;7:42449. doi:10.1038/srep42449.
  • Duverger O, Zah A, Isaac J, Sun H-W, Bartels AK, Lian JB, Berdal A, Hwang J, Morasso MI. Neural crest deletion of dlx3 leads to major dentin defects through down-regulation of dspp. J Biol Chem. 2012;287(15):12230–40. doi:10.1074/jbc.M111.326900.
  • De Vega S, Iwamoto T, Nakamura T, Hozumi K, McKnight DA, Fisher LW, Fukumoto S, Yamada Y. Tm14 is a new member of the fibulin family (fibulin-7) that interacts with extracellular matrix molecules and is active for cell binding. J Biol Chem. 2007;282(42):30878–88. doi:10.1074/jbc.M705847200.
  • Vijaykumar A, Dyrkacz P, Vidovic-Zdrilic I, Maye P, Mina M. Expression of bsp-gfptpz transgene during osteogenesis and reparative dentinogenesis. J Dent Res. 2020;99(1):89–97. doi:10.1177/0022034519885089.
  • Qin C, D’Souza R, Feng J. Dentin matrix protein 1 (dmp1): new and important roles for biomineralization and phosphate homeostasis. J Dent Res. 2007;86(12):1134–41. doi:10.1177/154405910708601202.
  • Tompkins K, Alvares K, George A, Veis A. Two related low molecular mass polypeptide isoforms of amelogenin have distinct activities in mouse tooth germ differentiation in vitro. J Bone Miner Res. 2005;20(2):341–49. doi:10.1359/JBMR.041107.
  • George A, Srinivasan R, Thotakura SR, Liu K, Veis A. Rat dentin matrix protein 3 is a compound protein of rat dentin sialoprotein and phosphophoryn. Connect Tissue Res. 1999;40(1):49–57. doi:10.3109/03008209909005277.
  • Hao J, Narayanan K, Muni T, Ramachandran A, George A. Dentin matrix protein 4, a novel secretory calcium-binding protein that modulates odontoblast differentiation. J Biol Chem. 2007;282(21):15357–65. doi:10.1074/jbc.M701547200.
  • Imhof T, Korkmaz Y, Koch M, Sengle G, Schiavinato A. Emilin proteins are novel extracellular constituents of the dentin-pulp complex. Sci Rep. 2020;10(1):15320. doi:10.1038/s41598-020-72123-2.
  • Xiong F, Ji Z, Liu Y, Zhang Y, Hu L, Yang Q, Qiu Q, Zhao L, Chen D, Tian Z. Mutation in ssuh2 causes autosomal‐dominant dentin dysplasia type i. Hum Mutat. 2017;38(1):95–104. doi:10.1002/humu.23130.
  • Ravindran S, Narayanan K, Eapen AS, Hao J, Ramachandran A, Blond S, George A. Endoplasmic reticulum chaperone protein grp-78 mediates endocytosis of dentin matrix protein 1. J Biol Chem. 2008;283(44):29658–70. doi:10.1074/jbc.M800786200.
  • Hayano S, Kurosaka H, Yanagita T, Kalus I, Milz F, Ishihara Y, Islam MN, Kawanabe N, Saito M, Kamioka H. Roles of heparan sulfate sulfation in dentinogenesis. J Biol Chem. 2012;287(15):12217–29. doi:10.1074/jbc.M111.332924.
  • Palosaari H, Pennington CJ, Larmas M, Edwards DR, Tjäderhane L, Salo T. Expression profile of matrix metalloproteinases (mmps) and tissue inhibitors of mmps in mature human odontoblasts and pulp tissue. Eur J Oral Sci. 2003;111(2):117–27. doi:10.1034/j.1600-0722.2003.00026.x.
  • Küchler EC, Menezes R, Callahan N, Costa MC, Modesto A, Meira R, Patir A, Seymen F, Paiva KB, Nunes FD. Mmp1 and mmp20 contribute to tooth agenesis in humans. Arch Oral Biol. 2011;56(5):506–11. doi:10.1016/j.archoralbio.2010.11.007.
  • Xu H, Snider T, Wimer H, Yamada S, Yang T, Holmbeck K, Foster B. Multiple essential mt1-mmp functions in tooth root formation, dentinogenesis, and tooth eruption. Matrix Biol. 2016;52:266–83. doi:10.1016/j.matbio.2016.01.002.
  • Yoshiba N, Yoshiba K, Stoetzel C, Perrin‐Schmitt F, Cam Y, Ruch JV, Lesot H. Temporospatial gene expression and protein localization of matrix metalloproteinases and their inhibitors during mouse molar tooth development. Dev Dyn. 2003;228(1):105–12. doi:10.1002/dvdy.10352.
  • Papagerakis P, Berdal A, Mesbah M, Peuchmaur M, Malaval L, Nydegger J, Simmer J, Macdougall M. Investigation of osteocalcin, osteonectin, and dentin sialophosphoprotein in developing human teeth. Bone. 2002;30(2):377–85. doi:10.1016/S8756-3282(01)00683-4.
  • Gullard A, Gluhak-Heinrich J, Papagerakis S, Sohn P, Unterbrink A, Chen S, MacDougall M. Mepe localization in the craniofacial complex and function in tooth dentin formation. J Histochem Cytochem. 2016;64(4):224–36. doi:10.1369/0022155416635569.
  • Lv H, Fu S, Wu G, Yan F. Phex neutralizing agent inhibits dentin formation in mouse tooth germ. Tissue Cell. 2011;43(2):125–30. doi:10.1016/j.tice.2010.12.008.
  • Hikake T, Mori T, Iseki K, Hagino S, Zhang Y, Takagi H, Yokoya S, Wanaka A. Comparison of expression patterns between creb family transcription factor oasis and proteoglycan core protein genes during murine tooth development. Anat Embryol (Berl). 2003;206(5):373–80. doi:10.1007/s00429-003-0311-z.
  • Thesleff I, Mackie E, Vainio S, Chiquet-Ehrismann R. Changes in the distribution of tenascin during tooth development. Development. 1987;101(2):289–96. doi:10.1242/dev.101.2.289.
  • Zeichner-David M, Vo H, Tan H, Diekwisch T, Berman B, Thiemann F, Alcocer M, Hsu P, Wang T, Eyna J. Timing of the expression of enamel gene products during mouse tooth development. Int J Dev Biol. 2003;41:27–38.
  • Heymann R, Kallenbach S, Alonso S, Carroll P, Mitsiadis TA. Dynamic expression patterns of the new protocadherin families cnrs and pcdh-γ during mouse odontogenesis: comparison with reelin expression. Mech Dev. 2001;106(1–2):181–84. doi:10.1016/S0925-4773(01)00433-6.
  • Maurin J-C, Couble M-L, Didier-Bazes M, Brisson C, Magloire H, Bleicher F. Expression and localization of reelin in human odontoblasts. Matrix Biol. 2004;23(5):277–85. doi:10.1016/j.matbio.2004.06.005.
  • Komichi S, Takahashi Y, Okamoto M, Ali M, Watanabe M, Huang H, Nakai T, Cooper P, Hayashi M. Protein s100-a7 derived from digested dentin is a critical molecule for dentin pulp regeneration. Cells. 2019;8(9). doi:10.3390/cells8091002.
  • James MJ, Järvinen E, Thesleff I. Bono1: a gene associated with regions of deposition of bone and dentine. Gene Expression Patterns. 2004;4(5):595–99. doi:10.1016/j.modgep.2004.01.013.
  • Takeuchi R, Ohkura N, Yoshiba K, Tohma A, Yoshiba N, Edanami N, Shirakashi M, Belal RSI, Ohshima H, Noiri Y. Immunohistochemistry and gene expression of glut1, runx2 and mtor in reparative dentinogenesis. Oral Dis. 2020;26(2):341–49. doi:10.1111/odi.13230.
  • Bidder M, Latifi T, Towler DA. Reciprocal temporospatial patterns of msx2 and osteocalcin gene expression during murine odontogenesis. J Bone Miner Res. 1998;13(4):609–19. doi:10.1359/jbmr.1998.13.4.609.
  • Wang S-K, Chan H-C, Makovey I, Simmer JP, Hu JC. Novel pax9 and col1a2 missense mutations causing tooth agenesis and oi/dgi without skeletal abnormalities. PLoS One. 2012;7(12):e51533. doi:10.1371/journal.pone.0051533.
  • Saito K, Nakatomi M, Ida-Yonemochi H, Ohshima H. Osteopontin is essential for type i collagen secretion in reparative dentin. J Dent Res. 2016;95(9):1034–41. doi:10.1177/0022034516645333.
  • Zhang X, Rahemtulla FG, MacDougall MJ, Thomas HF. Vitamin d receptor deficiency affects dentin maturation in mice. Arch Oral Biol. 2007;52(12):1172–79. doi:10.1016/j.archoralbio.2007.06.010.
  • Chae Y-M, Heo S-H, Kim J-Y, Lee J-M, Ryoo H-M, Cho J-Y. Upregulation of smpd3 via bmp2 stimulation and runx2. BMB Reports. 2009;42(2):86–90. doi:10.5483/BMBRep.2009.42.2.086.
  • Petersson U, Hultenby K, Wendel M. Identification, distribution and expression of osteoadherin during tooth formation. Eur J Oral Sci. 2003;111(2):128–36. doi:10.1034/j.1600-0722.2003.00027.x.
  • Collignon A-M, Amri N, Lesieur J, Sadoine J, Ribes S, Menashi S, Simon S, Berdal A, Rochefort G, Chaussain C. Sclerostin deficiency promotes reparative dentinogenesis. J Dent Res. 2017;96(7):815–21. doi:10.1177/0022034517698104.
  • Ao M, Chavez M, Chu E, Hemstreet K, Yin Y, Yadav M, Millán J, Fisher L, Goldberg H, Somerman M. Overlapping functions of bone sialoprotein and pyrophosphate regulators in directing cementogenesis. Bone. 2017;105:134–47. doi:10.1016/j.bone.2017.08.027.
  • Chen S, Gluhak-Heinrich J, Wang Y, Wu Y, Chuang H, Chen L, Yuan G, Dong J, Gay I, MacDougall M. Runx2, osx, and dspp in tooth development. J Dent Res. 2009;88(10):904–09. doi:10.1177/0022034509342873.
  • Morkmued S, Clauss F, Schuhbaur B, Fraulob V, Mathieu E, Hemmerlé J, Clevers H, Koo B-K, Dollé P, Bloch-Zupan A. Deficiency of the smoc2 matricellular protein impairs bone healing and produces age-dependent bone loss. Sci Rep. 2020;10(1):1–14. doi:10.1038/s41598-020-71749-6.
  • Muromachi K, Kamio N, Matsuki‐Fukushima M, Nishimura H, Tani‐Ishii N, Sugiya H, Matsushima K. Ccn 2/ctgf expression via cellular uptake of bmp‐1 is associated with reparative dentinogenesis. Oral Dis. 2015;21(6):778–84. doi:10.1111/odi.12347.
  • Akamatsu T, Matsuda Y, Tsumura K, Tada J, Parvin MN, Wei W, Kanamori N, Hosoi K. Highly regulated expression of subtilisin-like proprotein convertase pace4 (spc4) during dentinogenesis. Biochem Biophys Res Commun. 2000;272(2):410–15. doi:10.1006/bbrc.2000.2752.
  • Mao X, Liu S, Lin Y, Chen Z, Shao Y, Yu Q, Liu H, Lu Z, Sheng H, Lu X. Two novel mutations in the alpl gene of unrelated Chinese children with hypophosphatasia: case reports and literature review. BMC Pediatr. 2019;19(1):456. doi:10.1186/s12887-019-1800-4.
  • Ohazama A, Courtney J-M, Sharpe P. Opg, rank, and rankl in tooth development: co-ordination of odontogenesis and osteogenesis. J Dent Res. 2004;83(3):241–44. doi:10.1177/154405910408300311.
  • Yoshioka S, Takahashi Y, Abe M, Michikami I, Imazato S, Wakisaka S, Hayashi M, Ebisu S. Activation of the wnt/β-catenin pathway and tissue inhibitor of metalloprotease 1 during tertiary dentinogenesis. J Biochem. 2013;153(1):43–50. doi:10.1093/jb/mvs117.
  • Mostowska A, Biedziak B, Zadurska M, Dunin‐Wilczynska I, Lianeri M, Jagodzinski P. Nucleotide variants of genes encoding components of the wnt signalling pathway and the risk of non‐syndromic tooth agenesis. Clin Genet. 2013;84(5):429–40. doi:10.1111/cge.12061.
  • Yu F, Cai W, Jiang B, Xu L, Liu S, Zhao S. A novel mutation of adenomatous polyposis coli (apc) gene results in the formation of supernumerary teeth. J Cell Mol Med. 2018;22(1):152–62. doi:10.1111/jcmm.13303.
  • Issa YA, Kamal L, Rayyan AA, Dweik D, Pierce S, Lee MK, King M-C, Walsh T, Kanaan M. Mutation of kremen1, a modulator of wnt signaling, is responsible for ectodermal dysplasia including oligodontia in Palestinian families. Eur J Human Genet. 2016;24(10):1430–35. doi:10.1038/ejhg.2016.29.
  • Ockeloen CW, Khandelwal KD, Dreesen K, Ludwig KU, Sullivan R, Van Rooij IA, Thonissen M, Swinnen S, Phan M, Conte F. Novel mutations in lrp6 highlight the role of wnt signaling in tooth agenesis. Genet Med. 2016;18(11):1158. doi:10.1038/gim.2016.10.
  • Lammi L, Arte S, Somer M, Jarvinen H, Lahermo P, Thesleff I, Pirinen S, Nieminen P. Mutations in axin2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet. 2004;74(5):1043–50. doi:10.1086/386293.
  • Beck DB, Subramanian T, Vijayalingam S, Ezekiel UR, Donkervoort S, Yang ML, Dubbs HA, Ortiz-Gonzalez XR, Lakhani S, Segal D. A pathogenic ctbp1 missense mutation causes altered cofactor binding and transcriptional activity. neurogenetics. 2019;20(3):129–43. doi:10.1007/s10048-019-00578-1.
  • Yu G, Wang J, Lin X, Diao S, Cao Y, Dong R, Wang L, Wang S, Fan Z. Demethylation of sfrp 2 by histone demethylase kdm 2a regulated osteo‐/dentinogenic differentiation of stem cells of the apical papilla. Cell Prolif. 2016;49(3):330–40. doi:10.1111/cpr.12256.
  • Nakatomi M, Ida-Yonemochi H, Ohshima H. Lymphoid enhancer-binding factor 1 expression precedes dentin sialophosphoprotein expression during rat odontoblast differentiation and regeneration. J Endod. 2013;39(5):612–18. doi:10.1016/j.joen.2012.12.016.
  • Yamashiro T, Zheng L, Shitaku Y, Saito M, Tsubakimoto T, Takada K, Takano‐Yamamoto T, Thesleff I. Wnt10a regulates dentin sialophosphoprotein mrna expression and possibly links odontoblast differentiation and tooth morphogenesis. Differentiation. 2007;75(5):452–62. doi:10.1111/j.1432-0436.2006.00150.x.
  • Kantaputra P, Hutsadaloi A, Kaewgahya M, Intachai W, German R, Koparal M, Leethanakul C, Tolun A, Ketudat Cairns J. Wnt10b mutations associated with isolated dental anomalies. Clin Genet. 2018;93(5):992–99. doi:10.1111/cge.13218.
  • Chen D, Yu F, Wu F, Bai M, Lou F, Liao X, Wang C, Ye L. The role of wnt7b in the mediation of dentinogenesis via the erk1/2 pathway. Arch Oral Biol. 2019;104:123–32. doi:10.1016/j.archoralbio.2019.05.009.
  • Zeng Y, Baugh E, Akyalcin S, Letra A. Functional effects of wnt10a rare variants associated with tooth agenesis. J Dent Res. 2020;22034520962728.
  • Pan Y, Lu T, Peng L, Chen Z, Li M, Zhang K, Xiong F, Wu B. Vacuolar protein sorting 4b regulates the proliferation and odontoblastic differentiation of human dental pulp stem cells through the wnt-β-catenin signalling pathway. Artif Cells, Nanomed Biotechnol. 2019;47(1):2575–84. doi:10.1080/21691401.2019.1629950.
  • Li J, Xu J, Cui Y, Wang L, Wang B, Wang Q, Zhang X, Qiu M, Zhang Z. Mesenchymal sufu regulates development of mandibular molars via shh signaling. J Dent Res. 2019;98(12):1348–56. doi:10.1177/0022034519872679.
  • Binder M, Chmielarz P, Mckinnon PJ, Biggs LC, Thesleff I, Balic A. Functionally distinctive ptch receptors establish multimodal hedgehog signaling in the tooth epithelial stem cell niche. Stem Cells. 2019;37(9):1238–48. doi:10.1002/stem.3042.
  • Zhang Y, Zhao X, Hu Y, St. Amand T, Zhang M, Ramamurthy R, Qiu M, Chen Y. Msx1 is required for the induction of patched by sonic hedgehog in the mammalian tooth germ. Dev Dyn. 1999;215(1):45–53. doi:10.1002/(SICI)1097-0177(199905)215:1<45::AID-DVDY5>3.0.CO;2-5.
  • Hosoya A, Shalehin N, Takebe H, Shimo T, Irie K. Sonic hedgehog signaling and tooth development. Int J Mol Sci. 2020;21(5):1587. doi:10.3390/ijms21051587.
  • Hardcastle Z, Mo R, Hui C, Sharpe PT. The shh signalling pathway in tooth development: defects in gli2 and gli3 mutants. Development. 1998;125(15):2803–11. doi:10.1242/dev.125.15.2803.
  • Roh SY, Park J-C. The role of nuclear factor ic in tooth and bone development. J Korean Assoc Oral Maxillofac Surg. 2017;43(2):63–69. doi:10.5125/jkaoms.2017.43.2.63.
  • Liu B, Chen S, Cheng D, Jing W, Helms J. Primary cilia integrate hedgehog and wnt signaling during tooth development. J Dent Res. 2014;93(5):475–82. doi:10.1177/0022034514528211.
  • Ahn Y, Kim T, Choi H, Bae C, Yang Y, Baek J, Lee J, Cho E. Disruption of tgfbr2 in odontoblasts leads to aberrant pulp calcification. J Dent Res. 2015;94(6):828–35. doi:10.1177/0022034515577427.
  • Wang X-P, Suomalainen M, Jorgez CJ, Matzuk MM, Werner S, Thesleff I. Follistatin regulates enamel patterning in mouse incisors by asymmetrically inhibiting bmp signaling and ameloblast differentiation. Dev Cell. 2004;7(5):719–30. doi:10.1016/j.devcel.2004.09.012.
  • Heikinheimo K, Begue-Kirn C, Ritvos O, Tuuri T, Ruch J. The activin-binding protein follistatin is expressed in developing murine molar and induces odontoblast-like cell differentiation in vitro. J Dent Res. 1997;76(10):1625–36. doi:10.1177/00220345970760100301.
  • Mitsiadis TA, Angeli I, James C, Lendahl U, Sharpe PT. Role of islet1 in the patterning of murine dentition. Development. 2003;130(18):4451–60. doi:10.1242/dev.00631.
  • Laurikkala J, Kassai Y, Pakkasjärvi L, Thesleff I, Itoh N. Identification of a secreted bmp antagonist, ectodin, integrating bmp, fgf, and shh signals from the tooth enamel knot. Dev Biol. 2003;264(1):91–105. doi:10.1016/j.ydbio.2003.08.011.
  • Yamashiro T, Tummers M, Thesleff I. Expression of bone morphogenetic proteins and msx genes during root formation. J Dent Res. 2003;82(3):172–76. doi:10.1177/154405910308200305.
  • Åberg T, Wozney J, Thesleff I. Expression patterns of bone morphogenetic proteins (bmps) in the developing mouse tooth suggest roles in morphogenesis and cell differentiation. Dev Dyn. 1997;210(4):383–96. doi:10.1002/(SICI)1097-0177(199712)210:4<383::AID-AJA3>3.0.CO;2-C.
  • Li X, Wang L, Su Q, Ye L, Zhou X, Zhang L, Song D, Huang D. Potential roles of bone morphogenetic protein 9 in the odontogenic differentiation of dental pulp cells. J Endod. 2021;47(3):436–43. doi:10.1016/j.joen.2020.10.018.
  • Tao H, Li Q, Lin Y, Zuo H, Cui Y, Chen S, Chen Z, Liu H. Coordinated expression of p300 and hdac3 upregulates histone acetylation during dentinogenesis. J Cell Biochem. 2020;121(3):2478–88. doi:10.1002/jcb.29470.
  • Mitsiadis TA, Catón J, Pagella P, Orsini G, Jimenez-Rojo L. Monitoring notch signaling-associated activation of stem cell niches within injured dental pulp. Front Physiol. 2017;8(372). doi:10.3389/fphys.2017.00372.
  • Peled A, Sarig O, Samuelov L, Bertolini M, Ziv L, Weissglas-Volkov D, Eskin-Schwartz M, Adase CA, Malchin N, Bochner R. Mutations in tspear, encoding a regulator of notch signaling, affect tooth and hair follicle morphogenesis. PLoS Genet. 2016;12(10):e1006369. doi:10.1371/journal.pgen.1006369.
  • Qi S, Yan Y, Wen Y, Li J, Wang J, Chen F, Tang X, Shang G, Xu Y, Wang R. The effect of delta‐like 1 homologue on the proliferation and odontoblastic differentiation in human dental pulp stem cells. Cell Prolif. 2017;50(3):e12335. doi:10.1111/cpr.12335.
  • Cluzeau C, Hadj‐Rabia S, Jambou M, Mansour S, Guigue P, Masmoudi S, Bal E, Chassaing N, Vincent MC, Viot G. Only four genes (eda1, edar, edaradd, and wnt10a) account for 90% of hypohidrotic/anhidrotic ectodermal dysplasia cases. Hum Mutat. 2011;32(1):70–72. doi:10.1002/humu.21384.
  • Ohazama A, Courtney JM, Tucker AS, Naito A, Tanaka S, Inoue JI, Sharpe PT. Traf6 is essential for murine tooth cusp morphogenesis. Dev Dyn. 2004;229(1):131–35. doi:10.1002/dvdy.10400.
  • Pispa J, Mikkola ML, Mustonen T, Thesleff I. Ectodysplasin, edar and tnfrsf19 are expressed in complementary and overlapping patterns during mouse embryogenesis. Gene Expression Patterns. 2003;3(5):675–79. doi:10.1016/S1567-133X(03)00092-9.
  • Byers MR, Westenbroek RE. Odontoblasts in developing, mature and ageing rat teeth have multiple phenotypes that variably express all nine voltage-gated sodium channels. Arch Oral Biol. 2011;56(11):1199–220. doi:10.1016/j.archoralbio.2011.04.014.
  • Yang J, Cai W, Lu X, Liu S, Zhao S. Rna-sequencing analyses demonstrate the involvement of canonical transient receptor potential channels in rat tooth germ development. Front Physiol. 2017;8(455). doi:10.3389/fphys.2017.00455.
  • Hou J, Situ Z, Duan X. Clc chloride channels in tooth germ and odontoblast-like mdpc-23 cells. Arch Oral Biol. 2008;53(9):874–78. doi:10.1016/j.archoralbio.2008.03.009.
  • Kwon M, Baek SH, Park C-K, Chung G, Oh SB. Single-cell rt-pcr and immunocytochemical detection of mechanosensitive transient receptor potential channels in acutely isolated rat odontoblasts. Arch Oral Biol. 2014;59(12):1266–71. doi:10.1016/j.archoralbio.2014.07.016.
  • Sato M, Ogura K, Kimura M, Nishi K, Ando M, Tazaki M, Shibukawa Y. Activation of mechanosensitive transient receptor potential/piezo channels in odontoblasts generates action potentials in cocultured isolectin b4–negative medium-sized trigeminal ganglion neurons. J Endod. 2018;44(6):984–991. e982. doi:10.1016/j.joen.2018.02.020.
  • Lee K, Lee B-M, Park C-K, Kim YH, Chung G. Ion channels involved in tooth pain. Int J Mol Sci. 2019;20(9):2266. doi:10.3390/ijms20092266.
  • Wang W, Yi X, Ren Y, Xie Q. Effects of adenosine triphosphate on proliferation and odontoblastic differentiation of human dental pulp cells. J Endod. 2016;42(10):1483–89. doi:10.1016/j.joen.2016.07.013.
  • Felszeghy S, Módis L, Németh P, Nagy G, Zelles T, Agre P, Laurikkala J, Fejerskov O, Thesleff I, Nielsen S. Expression of aquaporin isoforms during human and mouse tooth development. Arch Oral Biol. 2004;49(4):247–57. doi:10.1016/j.archoralbio.2003.09.011.
  • Gao Y, Sahlberg C, Kiukkonen A, Alaluusua S, Pohjanvirta R, Tuomisto J, Lukinmaa P-L. Lactational exposure of han/wistar rats to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin interferes with enamel maturation and retards dentin mineralization. J Dent Res. 2004;83(2):139–44. doi:10.1177/154405910408300211.
  • Kettunen P, Laurikkala J, Itäranta P, Vainio S, Itoh N, Thesleff I. Associations of fgf‐3 and fgf‐10 with signaling networks regulating tooth morphogenesis. Dev Dyn. 2000;219(3):322–32. doi:10.1002/1097-0177(2000)9999:9999<::AID-DVDY1062>3.0.CO;2-J.
  • Kettunen P, Furmanek T, Chaulagain R, Hals Kvinnsland I, Luukko K. Developmentally regulated expression of intracellular fgf11-13, hormone-like fgf15 and canonical fgf16,-17 and-20 mrnas in the developing mouse molar tooth. Acta Odontol Scand. 2011;69(6):360–66. doi:10.3109/00016357.2011.568968.
  • Kettunen P, Thesleff I. Expression and function of fgfs-4, −8, and −9 suggest functional redundancy and repetitive use as epithelial signals during tooth morphogenesis. Dev Dyn. 1998;211(3):256–68. doi:10.1002/(SICI)1097-0177(199803)211:3<256::AID-AJA7>3.0.CO;2-G.
  • Dos Santos ÍGD, Jorge EC, Copola AGL, Bertassoli BM, de Goes AM, Silva GAB, Dos Santos ÍGD, Goes AMD. Fgf2, fgf3 and fgf4 expression pattern during molars odontogenesis in didelphis albiventris. Acta Histochem. 2017;119(2):129–41. doi:10.1016/j.acthis.2016.12.001.
  • Bei M, Maas R. Fgfs and bmp4 induce both msx1-independent and msx1-dependent signaling pathways in early tooth development. Development. 1998;125(21):4325–33. doi:10.1242/dev.125.21.4325.
  • Hur S-W, Oh S-H, Jeong B-C, Choi H, Kim J-W, Lee K-N, Hwang Y-C, Ryu J-H, Kim S-H, Koh J-T. Coup-tfii stimulates dentin sialophosphoprotein expression and mineralization in odontoblasts. J Dent Res. 2015;94(8):1135–42. doi:10.1177/0022034515585125.
  • Gu J, Ikeda H, Suda H. Sympathetic regulation of tertiary dentinogenesis via beta-2 adrenergic receptor on rat odontoblasts. J Endod. 2015;41(7):1056–60. doi:10.1016/j.joen.2015.01.010.
  • Wysolmerski JJ, Cormier S, Philbrick WM, Dann P, Zhang J-P, Roume J, Delezoide A-L, Silve C. Absence of functional type 1 parathyroid hormone (pth)/pth-related protein receptors in humans is associated with abnormal breast development and tooth impaction. J Clin Endocrinol Metab. 2001;86:1788–94.
  • Matsumura S, Quispe-Salcedo A, Schiller C, Shin J, Locke B, Yakar S, Shimizu E. Igf-1 mediates ephrinb1 activation in regulating tertiary dentin formation. J Dent Res. 2017;96(10):1153–61. doi:10.1177/0022034517708572.
  • Pääkkönen V, Saraniemi S, Bleicher F, Nevo Z, Tjäderhane L. Exostosin 1 is expressed in human odontoblasts. Arch Oral Biol. 2017;80:175–79. doi:10.1016/j.archoralbio.2017.04.004.
  • Kato Y, Yokose S. Oxytocin facilitates dentinogenesis of rat dental pulp cells. J Endod. 2021;47(4):592–99. doi:10.1016/j.joen.2020.12.017.
  • Ohshima H, Ajima H, Kawano Y, Nozawa-Inoue K, Wakisaka S, Maeda T. Transient expression of heat shock protein (hsp) 25 in the dental pulp and enamel organ during odontogenesis in the rat incisor. Arch Histol Cytol. 2000;63(4):381–95. doi:10.1679/aohc.63.381.
  • Chen T, Liu Z, Sun W, Li J, Liang Y, Yang X, Xu Y, Yu M, Tian W, Chen G. Inhibition of ape1 redox activity promotes odonto/osteogenic differentiation of dental papilla cells. Sci Rep. 2015;5(17483). doi:10.1038/srep17483.
  • Matsuishi YI, Kato H, Masuda K, Yamaza H, Hirofuji Y, Sato H, Wada H, Kiyoshima T, Nonaka K. Accelerated dentinogenesis by inhibiting the mitochondrial fission factor, dynamin related protein 1. Biochem Biophys Res Commun. 2018;495(2):1655–60. doi:10.1016/j.bbrc.2017.12.026.
  • Couve E, Osorio R, Schmachtenberg O. Mitochondrial autophagy and lipofuscin accumulation in aging odontoblasts. J Dent Res. 2012;91(7):696–701. doi:10.1177/0022034512449347.
  • Sehic A, Khuu C, Risnes S, Osmundsen H. Differential gene expression profiling of the molar tooth germ in peroxisome proliferator‐activated receptor‐α (ppar‐α) knockout mouse and in wild‐type mouse: molar tooth phenotype of ppar‐α knockout mouse. Eur J Oral Sci. 2009;117(2):93–104. doi:10.1111/j.1600-0722.2009.00615.x.
  • Lee Y-H, Kang Y-M, Heo M-J, Kim G-E, Bhattarai G, Lee N-H, Yu M-K, Yi H-K. The survival role of peroxisome proliferator-activated receptor gamma induces odontoblast differentiation against oxidative stress in human dental pulp cells. J Endod. 2013;39(2):236–41. doi:10.1016/j.joen.2012.11.006.
  • Chen H, Kang J, Zhang F, Yan T, Fan W, He H, Huang F. Sirt4 regulates rat dental papilla cell differentiation by promoting mitochondrial functions. Int J Biochem Cell Biol. 2021;134(105962):105962. doi:10.1016/j.biocel.2021.105962.
  • De Vicente J, Cabo R, Ciriaco E, Laura R, Naves F, Silos-Santiago I, Vega J. Impaired dental cytodifferentiation in glial cell-line derived growth factor (gdnf) deficient mice. Ann Anat-Anatomischer Anz. 2002;184(1):85–92. doi:10.1016/S0940-9602(02)80041-3.
  • Nakatomi M, Quispe-Salcedo A, Sakaguchi M, Ida-Yonemochi H, Okano H, Ohshima H. Nestin expression is differently regulated between odontoblasts and the subodontoblastic layer in mice. Histochem Cell Biol. 2018;149(4):383–91. doi:10.1007/s00418-018-1651-3.
  • Fried K, Risling M, Tidcombe H, Gassmann M, Lillesaar C. Expression of erbb3, erbb4, and neuregulin‐1 mrna during tooth development. Dev Dyn. 2002;224(3):356–60. doi:10.1002/dvdy.10114.
  • Zhou C, Yang G, Chen M, Wang C, He L, Xiang L, Chen D, Ling J, Mao JJ. Lhx8 mediated wnt and tgfβ pathways in tooth development and regeneration. Biomaterials. 2015;3:35–46. doi:10.1016/j.biomaterials.2015.06.004.
  • Hoshino M, Hashimoto S, Muramatsu T, Matsuki M, Ogiuchi H, Shimono M. Claudin rather than occludin is essential for differentiation in rat incisor odontoblasts. Oral Dis. 2008;14(7):606–12. doi:10.1111/j.1601-0825.2007.01427.x.
  • Palacios J, Benito N, Berraquero R, Pizarro A, Cano A, Gamallo C. Differential spatiotemporal expression of e-and p-cadherin during mouse tooth development. Int J Dev Biol. 2004;39:663–66.
  • Fried K, Mitsiadis T, Guerrier A, Haegerstrand A, Meister B. Combinatorial expression patterns of the connexins 26, 32, and 43 during development, homeostasis, and regeneration of rat teeth. Int J Dev Biol. 2003;40:985–95.
  • Yang J, Lu X, Liu S, Zhao S. The involvement of genes related to bile secretion pathway in rat tooth germ development. J Mol Histol. 2020;51(1):99–107. doi:10.1007/s10735-020-09861-0.
  • Li G, Liu M, Zhang S, Wan H, Zhang Q, Yue R, Yan X, Wang X, Wang Z, Sun Y. Essential role of ift140 in promoting dentinogenesis. J Dent Res. 2018;97(4):423–31. doi:10.1177/0022034517741283.
  • Wang X, Jong G, Lin LM, Shimizu E. Ephb–ephrinb interaction controls odontogenic/osteogenic differentiation with calcium hydroxide. J Endod. 2013;39(10):1256–60. doi:10.1016/j.joen.2013.06.016.
  • Wang L, Yang H, Lin X, Cao Y, Gao P, Zheng Y, Fan Z. Kdm1a regulated the osteo/dentinogenic differentiation process of the stem cells of the apical papilla via binding with plod2. Cell Prolif. 2018;51(4):e12459. doi:10.1111/cpr.12459.
  • Li QM, Li JL, Feng ZH, Lin HC, Xu Q. Effect of histone demethylase kdm5a on the odontogenic differentiation of human dental pulp cells. Bioengineered. 2020;11(1):449–62. doi:10.1080/21655979.2020.1743536.
  • Schneider K, Korkmaz Y, Addicks K, Lang H, Raab WH-M. Prion protein (prp) in human teeth: an unprecedented pointer to prp’s function. J Endod. 2007;33(2):110–13. doi:10.1016/j.joen.2006.11.010.
  • Li X-Y, Ban G-F, Al-Shameri B, He X, Liang D-Z, Chen W-X. High-temperature requirement protein a1 regulates odontoblastic differentiation of dental pulp cells via the transforming growth factor beta 1/smad signaling pathway. J Endod. 2018;44(5):765–72. doi:10.1016/j.joen.2018.02.003.
  • Kim J-Y, Kim D-S, Auh Q-S, Yi J-K, Moon SU, Kim E-C. Role of protein phosphatase 1 in angiogenesis and odontoblastic differentiation of human dental pulp cells. J Endod. 2017;43(3):417–24. doi:10.1016/j.joen.2016.10.013.
  • Yoshida S, Wada N, Hasegawa D, Miyaji H, Mitarai H, Tomokiyo A, Hamano S, Maeda H. Semaphorin 3a induces odontoblastic phenotype in dental pulp stem cells. J Dent Res. 2016;95(11):1282–90. doi:10.1177/0022034516653085.
  • Park S, Lee Y, Lee D, Park J, Kim R, Shon W. Cpne7 induces biological dentin sealing in a dentin hypersensitivity model. J Dent Res. 2019;98(11):1239–44. doi:10.1177/0022034519869577.
  • Maurin J-C, Couble M-L, Staquet M-J, Carrouel F, About I, Avila J, Magloire H, Bleicher F. Microtubule-associated protein 1b, a neuronal marker involved in odontoblast differentiation. J Endod. 2009;35(7):992–96. doi:10.1016/j.joen.2009.04.009.
  • McKee M, Yadav M, Foster B, Somerman M, Farquharson C, Millán J. Compounded phospho1/alpl deficiencies reduce dentin mineralization. J Dent Res. 2013;92(8):721–27. doi:10.1177/0022034513490958.
  • Park Y, Lee Y, Seo Y, Seo H, Park J, Bae H, Park J. Midkine promotes odontoblast-like differentiation and tertiary dentin formation. J Dent Res. 2020;0022034520925427.
  • Zheng J, Nie X, He L, Yoon A, Wu L, Zhang X, Vats M, Schiff M, Xiang L, Tian Z. Epithelial cdc42 deletion induced enamel organ defects and cystogenesis. J Dent Res. 2018;97(12):1346–54. doi:10.1177/0022034518779546.
  • Nakamura T, Unda F, De-Vega S, Vilaxa A, Fukumoto S, Yamada KM, Yamada Y. The krüppel-like factor epiprofin is expressed by epithelium of developing teeth, hair follicles, and limb buds and promotes cell proliferation. J Biol Chem. 2004;279(1):626–34. doi:10.1074/jbc.M307502200.
  • Bouwman P, Göllner H, Elsässer HP, Eckhoff G, Karis A, Grosveld F, Philipsen S, Suske G. Transcription factor sp3 is essential for post‐natal survival and late tooth development. EMBO J. 2000;19(4):655–61. doi:10.1093/emboj/19.4.655.
  • Jimenez-Rojo L, Ibarretxe G, Aurrekoetxea M, de Vega S, Nakamura T, Yamada Y, Unda F. Epiprofin-sp6. A new player in the regulation of tooth development. Histol Histopathol. 2010;25(12):1621–30. doi:10.14670/HH-25.1621.
  • Bae JM, Clarke JC, Rashid H, Adhami MD, McCullough K, Scott JS, Chen H, Sinha KM, de Crombrugghe B, Javed A. Specificity protein 7 is required for proliferation and differentiation of ameloblasts and odontoblasts. J Bone Miner Res. 2018;33(6):1126–40. doi:10.1002/jbmr.3401.
  • Xiao Y, Lin YX, Cui Y, Zhang Q, Pei F, Zuo HY, Liu H, Chen Z. Zeb1 promotes odontoblast differentiation in a stage-dependent manner. J Dent Res. 2021;22034520982249.
  • Aryal YP, Neupane S, Kim TY, Lee ES, Pokhrel NK, Yeon CY, Kim JY, An CH, An SY, Park EK, et al. Developmental roles of fuse binding protein 1 (fubp1) in tooth morphogenesis. Int J Mol Sci. 2020;21(21):8079. doi:10.3390/ijms21218079.
  • Zhang Y, Fang M, Yang Z, Qin W, Guo S, Ma J, Chen W. Gata binding protein 4 regulates tooth root dentin development via fbp1. Int J Biol Sci. 2020;16(1):181–93. doi:10.7150/ijbs.36567.
  • De Coster P, Cornelissen M, De Paepe A, Martens L, Vral A. Abnormal dentin structure in two novel gene mutations [col1a1, arg134cys] and [adamts2, trp795-to-ter] causing rare type i collagen disorders. Arch Oral Biol. 2007;52(2):101–09. doi:10.1016/j.archoralbio.2006.08.007.
  • Goss M, Socorro M, Monier D, Verdelis K, Napierala D. Trps1 transcription factor regulates mineralization of dental tissues and proliferation of tooth organ cells. Mol Genet Metab. 2019;126(4):504–12. doi:10.1016/j.ymgme.2019.01.014.
  • Abe M, Tamamura Y, Yamagishi H, Maeda T, Kato J, Tabata MJ, Srivastava D, Wakisaka S, Kurisu K. Tooth-type specific expression of dhand/hand2: possible involvement in murine lower incisor morphogenesis. Cell Tissue Res. 2002;310(2):201–12. doi:10.1007/s00441-002-0611-2.
  • Zhang Y, Lian M, Zhao X, Cao P, Xiao J, Shen S, Tang W, Zhang J, Hao J, Feng X. Rick regulates the odontogenic differentiation of dental pulp stem cells through activation of tnf-alpha via the erk and not through nf-kappab signaling pathway. Cell Biol Int. 2020.
  • Fu J, Zheng H, Xue Y, Jin R, Yang G, Chen Z, Yuan G. Wwp2 promotes odontoblastic differentiation by monoubiquitinating klf5. J Dent Res. 2020;22034520970866.
  • Lekszas C, Foresti O, Raote I, Liedtke D, Konig EM, Nanda I, Vona B, De Coster P, Cauwels R, Malhotra V, et al. Biallelic tango1 mutations cause a novel syndromal disease due to hampered cellular collagen secretion. Elife. 2020;9. doi:10.7554/eLife.51319.
  • Tohma A, Ohkura N, Yoshiba K, Takeuchi R, Yoshiba N, Edanami N, Shirakashi M, Ibn Belal RS, Ohshima H, Noiri Y. Glucose transporter 2 and 4 are involved in glucose supply during pulpal wound healing after pulpotomy with mineral trioxide aggregate in rat molars. J Endod. 2020;46(1):81–88. doi:10.1016/j.joen.2019.10.003.
  • Yan W, Cao Y, Yang H, Han N, Zhu X, Fan Z, Du J, Zhang F. Cb1 enhanced the osteo/dentinogenic differentiation ability of periodontal ligament stem cells via p38 mapk and jnk in an inflammatory environment. Cell Prolif. 2019;52(6):e12691. doi:10.1111/cpr.12691.
  • Fujihara H, Nozaki T, Tsutsumi M, Isumi M, Shimoda S, Hamada Y, Masutani M. Spontaneous development of dental dysplasia in aged parp-1 knockout mice. Cells. 2019;8(10). doi:10.3390/cells8101157.
  • Jiang S, Sheng R, Qi X, Wang J, Guo Y, Yuan Q. Usp34 regulates tooth root morphogenesis by stabilizing nfic. Int J Oral Sci. 2021;13(1):7. doi:10.1038/s41368-021-00114-8.
  • Luo X, Yin J, Miao S, Feng W, Ning T, Xu S, Huang S, Zhang S, Liao Y, Hao C, et al. Mtorc1 promotes mineralization via p53 pathway. FASEB J. 2021;35(2):e21325. doi:10.1096/fj.202002016R.
  • Sulkala M, Larmas M, Sorsa T, Salo T, Tjaderhane L. The localization of matrix metalloproteinase-20 (mmp-20, enamelysin) in mature human teeth. J Dent Res. 2002;81(9):603–07. doi:10.1177/154405910208100905.
  • Wang DY, Zhang L, Fan J, Li F, Ma KQ, Wang P, Chen JH. Matrix metalloproteinases in human sclerotic dentine of attrited molars. Arch Oral Biol. 2012;57(10):1307–12. doi:10.1016/j.archoralbio.2012.04.012.
  • Koyama E, Wu C, Shimo T, Iwamoto M, Ohmori T, Kurisu K, Ookura T, Bashir MM, Abrams WR, Tucker T, et al. Development of stratum intermedium and its role as a sonic hedgehog-signaling structure during odontogenesis. Dev Dyn. 2001;222(2):178–91. doi:10.1002/dvdy.1186.
  • Wang S, Mu J, Fan Z, Yu Y, Yan M, Lei G, Tang C, Wang Z, Zheng Y, Yu J, et al. Insulin-like growth factor 1 can promote the osteogenic differentiation and osteogenesis of stem cells from apical papilla. Stem Cell Res. 2012;8(3):346–56. doi:10.1016/j.scr.2011.12.005.
  • Ohshima H, Ajima H, Kawano Y, Nozawa-Inoue K, Wakisaka S, Maeda T. Transient expression of heat shock protein (hsp)25 in the dental pulp and enamel organ during odontogenesis in the rat incisor. Arch Histol Cytol. 2000;63(4):381–95. doi:10.1679/aohc.63.381.
  • Couve E, Osorio R, Schmachtenberg O. The amazing odontoblast: activity, autophagy, and aging. J Dent Res. 2013;92(9):765–72. doi:10.1177/0022034513495874.
  • Couve E, Schmachtenberg O. Autophagic activity and aging in human odontoblasts. J Dent Res. 2011;90(4):523–28. doi:10.1177/0022034510393347.
  • Arola D, Reprogel R. Effects of aging on the mechanical behavior of human dentin. Biomaterials. 2005;26(18):4051–61. doi:10.1016/j.biomaterials.2004.10.029.
  • Tagami J, Hosoda H, Burrow M, Nakajima M. Effect of aging and caries on dentin permeability. Proceedings of the Finnish Dental Society. Suomen Hammaslaakariseuran toimituksia. Vol. 88; 1992. p. 149–54.
  • Robertson KD, Wolffe AP. DNA methylation in health and disease. Nat Rev Genet. 2000;1(1):11–19. doi:10.1038/35049533.
  • Xuan K, Li B, Guo H, Sun W, Kou X, He X, Zhang Y, Sun J, Liu A, Liao L. Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth. Sci Transl Med. 2018;10(455). doi:10.1126/scitranslmed.aaf3227.
  • Zuo J, Zhen J, Wang F, Li Y, Zhou Z. Effect of low-intensity pulsed ultrasound on the expression of calcium ion transport-related proteins during tertiary dentin formation. Ultrasound Med Biol. 2018;44(1):223–33. doi:10.1016/j.ultrasmedbio.2017.09.006.
  • Zheng L, Zhang L, Chen L, Jiang J, Zhou X, Wang M, Fan Y. Static magnetic field regulates proliferation, migration, differentiation, and yap/taz activation of human dental pulp stem cells. J Tissue Eng Regen Med. 2018;12(10):2029–40. doi:10.1002/term.2737.
  • Nakashima M, Mizunuma K, Murakami T, Akamine A. Induction of dental pulp stem cell differentiation into odontoblasts by electroporation-mediated gene delivery of growth/differentiation factor 11 (gdf11). Gene Ther. 2002;9(12):814–18. doi:10.1038/sj.gt.3301692.
  • Paschalidou M, Athanasiadou E, Arapostathis K, Kotsanos N, Koidis P, Bakopoulou A, Theocharidou A. Biological effects of low-level laser irradiation (llli) on stem cells from human exfoliated deciduous teeth (shed). Clin Oral Investig. 2020;24(1):167–80. doi:10.1007/s00784-019-02874-4.