1,770
Views
0
CrossRef citations to date
0
Altmetric
Review

Cell Therapy Approaches for Articular Cartilage Regeneration

ORCID Icon
Article: 2278235 | Received 10 Jul 2023, Accepted 27 Oct 2023, Published online: 14 Nov 2023

References

  • Alcaide-Ruggiero L, Molina-Hernandez V, Granados MM, Dominguez JM. Main and minor types of collagens in the articular cartilage: the role of collagens in repair tissue evaluation in chondral defects. IJMS. 2021;22(24):13329. doi:10.3390/ijms222413329.
  • Jang S, Lee K, Ju JH. Recent updates of diagnosis, pathophysiology, and treatment on osteoarthritis of the knee. Int J Mol Sci. 2021;22(5):2619. doi:10.3390/ijms22052619.
  • Makarczyk MJ, Gao Q, He Y, Li Z, Gold MS, Hochberg MC, Bunnell BA, Tuan RS, Goodman SB, Lin H. Current models for development of disease-modifying osteoarthritis drugs. Tissue Engineering Part C: Methods. 2021;27(2):124–19. doi:10.1089/ten.tec.2020.0309.
  • Armiento AR, Stoddart MJ, Alini M, Eglin D. Biomaterials for articular cartilage tissue engineering: learning from biology. Acta Biomater. 2018;65:1–20. doi:10.1016/j.actbio.2017.11.021.
  • Li Z, Lin Z, Liu S, Yagi H, Zhang X, Yocum L, Romero‐Lopez M, Rhee C, Makarcyzk MJ, Yu I. Human mesenchymal stem cell-derived miniature joint system for disease modeling and drug testing. Advanced Science. 2022;9(21):e2105909. doi:10.1002/advs.202105909.
  • Jiang LF, Fang JH, Wu LD. Role of infrapatellar fat pad in pathological process of knee osteoarthritis: Future applications in treatment. World J Clin Cases. 2019;7(16):2134–42. doi:10.12998/wjcc.v7.i16.2134.
  • Makarczyk MJ, Hines S, Yagi H, Li ZA, Aguglia AM, Zbikowski J, Padget A-M, Gao Q, Bunnell BA, Goodman SB. Using microphysiological system for the development of treatments for joint inflammation and associated cartilage loss—A pilot study. Biomolecules. 2023;13(2):384. doi:10.3390/biom13020384.
  • Kim C, Keating A. Cell therapy for knee osteoarthritis: mesenchymal stromal cells. Gerontology. 2019;65(3):294–98. doi:10.1159/000496605.
  • Shah MR, Kaplan KM, Meislin RJ, Bosco JA. Articular cartilage restoration of the knee. Bull NYU Hosp Jt Dis. 2007;65:51–60.
  • Na Y, Shi Y, Liu W, Jia Y, Kong L, Zhang T, Han C, Ren Y. Is implantation of autologous chondrocytes superior to microfracture for articular-cartilage defects of the knee? A systematic review of 5-year follow-up data. Int J Surg. 2019;68:56–62. doi:10.1016/j.ijsu.2019.06.007.
  • Redondo ML, Naveen NB, Liu JN, Tauro TM, Southworth TM, Cole BJ. Preservation of knee articular cartilage. Sports Medicine And Arthroscopy Review. 2018;26(4):e23–e30. doi:10.1097/JSA.0000000000000226.
  • Thorp H, Kim K, Kondo M, Grainger DW, Okano T. Fabrication of hyaline-like cartilage constructs using mesenchymal stem cell sheets. Sci Rep. 2020;10(1):20869. doi:10.1038/s41598-020-77842-0.
  • Riewruja K, Makarczyk M, Alexander PG, Gao Q, Goodman SB, Bunnell BA, Gold MS, Lin H. Experimental models to study osteoarthritis pain and develop therapeutics. Osteoarthritis And Cartilage Open. 2022;4(4):100306. doi:10.1016/j.ocarto.2022.100306.
  • Gou GH, Tseng F-J, Wang S-H, Chen P-J, Shyu J-F, Weng C-F, Pan R-Y. Autologous chondrocyte implantation versus microfracture in the knee: a meta-analysis and systematic review. Arthroscopy: The Journal Of Arthroscopic & Related Surgery. 2020;36(1):289–303. doi:10.1016/j.arthro.2019.06.033.
  • Dekker TJ, Aman ZS, DePhillipo NN, Dickens JF, Anz AW, LaPrade RF. Chondral Lesions of the Knee: An evidence-based approach. Journal Of Bone And Joint Surgery. 2021;103(7):629–45. doi:10.2106/JBJS.20.01161.
  • Goldberg A, Mitchell K, Soans J, Kim L, Zaidi R. The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review. J Orthop Surg Res. 2017;12(1):39. doi:10.1186/s13018-017-0534-y.
  • Redondo ML, Beer AJ, Yanke AB. Cartilage Restoration: Microfracture and Osteochondral Autograft Transplantation. J Knee Surg. 2018;31(3):231–38. doi:10.1055/s-0037-1618592.
  • Erggelet C, Vavken P. Microfracture for the treatment of cartilage defects in the knee joint – a golden standard? Journal Of Clinical Orthopaedics And Trauma. 2016;7(3):145–52. doi:10.1016/j.jcot.2016.06.015.
  • Kheir E, Stapleton T, Shaw D, Jin Z, Fisher J, Ingham E. Development and characterization of an acellular porcine cartilage bone matrix for use in tissue engineering. J Biomedical Materials Res. 2011;99A(2):283–94. doi:10.1002/jbm.a.33171.
  • Elder S, Chenault H, Gloth P, Webb K, Recinos R, Wright E, Moran D, Butler J, Borazjani A, Cooley A. Effects of antigen removal on a porcine osteochondral xenograft for articular cartilage repair. J Biomedical Materials Res. 2018;106(8):2251–60. doi:10.1002/jbm.a.36411.
  • Garretson RB, Katolik LI, Verma N, Beck PR, Bach BR, Cole BJ. Contact pressure at osteochondral donor sites in the patellofemoral joint. Am J Sports Med. 2004;32(4):967–74. doi:10.1177/0363546503261706.
  • Cong B, Sun T, Zhao Y, Chen M. Current and novel therapeutics for articular cartilage repair and regeneration. Ther Clin Risk Manag. 2023;19:485–502. doi:10.2147/TCRM.S410277.
  • Lin X, Chen J, Qiu P, Zhang Q, Wang S, Su M, Chen Y, Jin K, Qin A, Fan S. Biphasic hierarchical extracellular matrix scaffold for osteochondral defect regeneration. Osteoarthritis And Cartilage. 2018;26(3):433–44. doi:10.1016/j.joca.2017.12.001.
  • Fermor HL, Russell SL, Williams S, Fisher J, Ingham E. Development and characterisation of a decellularised bovine osteochondral biomaterial for cartilage repair. J Mater Sci: Mater Med. 2015;26(5):186. doi:10.1007/s10856-015-5517-0.
  • Novak T, Fites Gilliland K, Xu X, Worke L, Ciesielski A, Breur G, Neu CP. In Vivo Cellular Infiltration and Remodeling in a Decellularized Ovine Osteochondral Allograft. Tissue Engineering Part A. 2016;22(21–22):1274–85. doi:10.1089/ten.tea.2016.0149.
  • Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233–43. doi:10.1016/j.biomaterials.2011.01.057.
  • Rastegar Adib F, Bagheri F, Sharifi AM. Osteochondral regeneration in rabbit using xenograft decellularized ECM in combination with different biological products; platelet-rich fibrin, amniotic membrane extract, and mesenchymal stromal cells. J Biomed Mater Res B Appl Biomater. 2022;110(9):2089–99. doi:10.1002/jbm.b.35063.
  • Choi SH, Lee K, Han H, Mo H, Jung H, Ryu Y, Nam Y, Rim YA, Ju JH . Prochondrogenic effect of decellularized extracellular matrix secreted from human induced pluripotent stem cell-derived chondrocytes. Acta Biomater. 2023;167:234–48. doi:10.1016/j.actbio.2023.05.052.
  • Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol. 2015;11(1):21–34. doi:10.1038/nrrheum.2014.157.
  • Welch T, Mandelbaum B, Tom M. Autologous Chondrocyte Implantation: Past, Present, and Future. Sports Medicine And Arthroscopy Review. 2016;24(2):85–91. doi:10.1097/JSA.0000000000000115.
  • Krill M, Early N, Everhart JS, Flanigan DC. Autologous Chondrocyte Implantation (ACI) for Knee Cartilage Defects: A Review of Indications, Technique, and Outcomes. JBJS Rev. 2018;6(2):e5. doi:10.2106/JBJS.RVW.17.00078.
  • Gillogly SD, Wheeler KS. Autologous Chondrocyte Implantation With Collagen Membrane. Sports Medicine And Arthroscopy Review. 2015;23(3):118–24. doi:10.1097/JSA.0000000000000079.
  • Carey JL, Remmers AE, Flanigan DC. Use of MACI (autologous cultured chondrocytes on porcine collagen membrane) in the United States: preliminary experience. Orthopaedic Journal Of Sports Medicine. 2020;8(8):2325967120941816. doi:10.1177/2325967120941816.
  • Drug USF BLA Approval. 2016.<https://wayback.archive-it.org/7993/20190425002025/https://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM533307.pdf>.
  • MACI Defect Types. 2021. <https://www.maci.com/healthcare-professionals/about-the-procedure/defect-types.html>.
  • About The Procedure. 2021. <https://www.maci.com/healthcare-professionals/about-the-procedure/the-maci-procedure.html>.
  • Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, Maeda N, Watanabe H. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med. 2004;351(12):1187–96. doi:10.1056/NEJMoa040455.
  • Sawa Y, Miyagawa S, Sakaguchi T, Fujita T, Matsuyama A, Saito A, Shimizu T, Okano T. Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: report of a case. Surg Today. 2012;42(2):181–84. doi:10.1007/s00595-011-0106-4.
  • Yang GP, Soetikno RM. Treatment of oesophageal ulcerations using endoscopic transplantation of tissue-engineered autologous oral mucosal epithelial cell sheets in a canine model. Gut. 2007;56(3):313–14. doi:10.1136/gut.2006.100073.
  • Okano T, Yamada N, Sakai H, Sakurai Y. A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res. 1993;27(10):1243–51. doi:10.1002/jbm.820271005.
  • Okano T, Yamada N, Okuhara M, Sakai H, Sakurai Y. Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials. 1995;16(4):297–303. doi:10.1016/0142-9612(95)93257-E.
  • Takahashi T, Sato M, Toyoda E, Maehara M, Takizawa D, Maruki H, Tominaga A, Okada E, Okazaki K, Watanabe M. Rabbit xenogeneic transplantation model for evaluating human chondrocyte sheets used in articular cartilage repair. J Tissue Eng Regen Med. 2018;12:2067–76. doi:10.1002/term.2741.
  • Kaneshiro N, Sato M, Ishihara M, Mitani G, Sakai H, Mochida J. Bioengineered chondrocyte sheets may be potentially useful for the treatment of partial thickness defects of articular cartilage. Biochemical And Biophysical Research Communications. 2006;349(2):723–31. doi:10.1016/j.bbrc.2006.08.096.
  • Takaku Y, Murai K, Ukai T, Ito S, Kokubo M, Satoh M, Kobayashi E, Yamato M, Okano T, Takeuchi M. In vivo cell tracking by bioluminescence imaging after transplantation of bioengineered cell sheets to the knee joint. Biomaterials. 2014;35(7):2199–206. doi:10.1016/j.biomaterials.2013.11.071.
  • Ito S, Sato M, Yamato M, Mitani G, Kutsuna T, Nagai T, Ukai T, Kobayashi M, Kokubo M, Okano T. Repair of articular cartilage defect with layered chondrocyte sheets and cultured synovial cells. Biomaterials. 2012;33(21):5278–86. doi:10.1016/j.biomaterials.2012.03.073.
  • Tani Y, Sato M, Maehara M, Nagashima H, Yokoyama M, Yokoyama M, Yamato M, Okano T, Mochida J. The effects of using vitrified chondrocyte sheets on pain alleviation and articular cartilage repair. J Tissue Eng Regen Med. 2017;11(12):3437–44. doi:10.1002/term.2257.
  • Ebihara G, Sato M, Yamato M, Mitani G, Kutsuna T, Nagai T, Ito S, Ukai T, Kobayashi M, Kokubo M. Cartilage repair in transplanted scaffold-free chondrocyte sheets using a minipig model. Biomaterials. 2012;33(15):3846–51. doi:10.1016/j.biomaterials.2012.01.056.
  • Yokoyama M, Sato M, Umezawa A, Mitani G, Takagaki T, Yokoyama M, Kawake T, Okada E, Kokubo M, Ito N. Assessment of the safety of chondrocyte sheet implantation for cartilage regeneration. Tissue Engineering Part C: Methods. 2016;22(1):59–68. doi:10.1089/ten.tec.2015.0254.
  • Sato M, Yamato M, Hamahashi K, Okano T, Mochida J. Articular cartilage regeneration using cell sheet technology. Anat Rec (Hoboken). 2014;297(1):36–43. doi:10.1002/ar.22829.
  • Sato M, Yamato M, Mitani G, Takagaki T, Hamahashi K, Nakamura Y, Ishihara M, Matoba R, Kobayashi H, Okano T, Mochida J. Combined surgery and chondrocyte cell-sheet transplantation improves clinical and structural outcomes in knee osteoarthritis. npj Regen Med. 2019;4(4). doi:10.1038/s41536-019-0069-4.
  • Takao T, Sato M, Fujisawa Y, Toyoda E, Yamada D, Hitsumoto Y, Nakata E, Ozaki T, Takarada T. A novel chondrocyte sheet fabrication using human-induced pluripotent stem cell-derived expandable limb-bud mesenchymal cells. Stem Cell Res Ther. 2023;14(34). doi:10.1186/s13287-023-03252-4.
  • Yamada D, Sato M, Fujisawa Y, Toyoda E, Yamada D, Hitsumoto Y, Nakata E, Ozaki T, Takarada Tet. Induction and expansion of human PRRX1(+) limb-bud-like mesenchymal cells from pluripotent stem cells. Nat Biomed Eng. 2021;5(8):926–40. doi:10.1038/s41551-021-00778-x.
  • Fuggle NR, Cooper C, Oreffo ROC, Price AJ, Aux JF, Maheu E, Cutolo M, Honvo G, Conaghan PG, Berenbaum F. Alternative and complementary therapies in osteoarthritis and cartilage repair. Aging Clin Exp Res. 2020;32(4):547–60. doi:10.1007/s40520-020-01515-1.
  • Chimutengwende-Gordon M, Donaldson J, Bentley G. Current solutions for the treatment of chronic articular cartilage defects in the knee. EFORT Open Rev. 2020;5(3):156–63. doi:10.1302/2058-5241.5.190031.
  • Sanjurjo-Rodriguez C, Castro-Viñuelas R, Piñeiro-Ramil M, Rodríguez-Fernández S, Fuentes-Boquete I, Blanco FJ, Díaz-Prado S. Versatility of induced pluripotent stem cells (iPscs) for improving the knowledge on musculoskeletal diseases. IJMS. 2020;21(17):6124. doi:10.3390/ijms21176124.
  • Deng Z, Jin J, Wang S, Qi F, Chen X, Liu C, Li Y, Ma Y, Lyu F, Zheng Q. Narrative review of the choices of stem cell sources and hydrogels for cartilage tissue engineering. Ann Transl Med. 2020;8(23):1598. doi:10.21037/atm-20-2342.
  • Csobonyeiova M, Polak S, Nicodemou A, Zamborsky R, Danisovic L. iPscs in modeling and therapy of osteoarthritis. Biomedicines. 2021;9(2):186. doi:10.3390/biomedicines9020186.
  • Hwang NS, Varghese S, Zhang Z, Elisseeff J. Chondrogenic differentiation of human embryonic stem cell–derived cells in arginine-glycine-aspartate–modified hydrogels. Tissue Engineering. 2006;12(9):2695–706. doi:10.1089/ten.2006.12.2695.
  • Yamashita A, Tsumaki N. Recent progress of animal transplantation studies for treating articular cartilage damage using pluripotent stem cells. Dev Growth Differ. 2021;63(1):72–81. doi:10.1111/dgd.12706.
  • Li Y, Liu T, Van Halm-Lutterodt N, Chen J, Su Q, Hai Y. Reprogramming of blood cells into induced pluripotent stem cells as a new cell source for cartilage repair. Stem Cell Res Ther. 2016;7(1):31. doi:10.1186/s13287-016-0290-7.
  • Lee MS, Stebbins MJ, Jiao H, Huang H-C, Leiferman EM, Walczak BE, Palecek SP, Shusta EV, Li W-J. Comparative evaluation of isogenic mesodermal and ectomesodermal chondrocytes from human iPscs for cartilage regeneration. Sci Adv. 2021;7(21). doi:10.1126/sciadv.abf0907.
  • Murphy MP, Koepke LS, Lopez MT, Tong X, Ambrosi TH, Gulati GS, Marecic O, Wang Y, Ransom RC, Hoover MY. Articular cartilage regeneration by activated skeletal stem cells. Nat Med. 2020;26(10):1583–92. doi:10.1038/s41591-020-1013-2.
  • Kangari P, Talaei-Khozani T, Razeghian-Jahromi I, Razmkhah M. Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther. 2020;11(1):492. doi:10.1186/s13287-020-02001-1.
  • Nam Y, Rim YA, Jung SM, Ju JH. Cord blood cell-derived iPscs as a new candidate for chondrogenic differentiation and cartilage regeneration. Stem Cell Res Ther. 2017;8(16). doi:10.1186/s13287-017-0477-6.
  • Nims RJ, Pferdehirt L, Ho NB, Savadipour A, Lorentz J, Sohi S, Kassab J, Ross AK, O’Conor CJ, Liedtke WB. A synthetic mechanogenetic gene circuit for autonomous drug delivery in engineered tissues. Sci Adv. 2021;7(5). doi:10.1126/sciadv.abd9858.
  • Dicks AR, Steward N, Guilak F, Wu CL. Chondrogenic differentiation of human-induced pluripotent stem cells. Methods Mol Biol. 2023;2598:87–114. doi:10.1007/978-1-0716-2839-3_8.
  • Choi YR, Collins KH, Lee JW, Kang HJ, Guilak F. Genome engineering for osteoarthritis: from designer cells to disease-modifying drugs. Tissue Eng Regen Med. 2019;16(4):335–43. doi:10.1007/s13770-018-0172-4.
  • Tsumaki N, Okada M, Yamashita A. iPS cell technologies and cartilage regeneration. Bone. 2015;70:48–54. doi:10.1016/j.bone.2014.07.011.
  • Brunger JM, Zutshi A, Willard VP, Gersbach CA, Guilak F. Genome engineering of stem cells for autonomously regulated, closed-loop delivery of biologic drugs. Stem Cell Rep. 2017;8(5):1202–13. doi:10.1016/j.stemcr.2017.03.022.
  • Coleman RM. Engineering closed-loop, autoregulatory gene circuits for osteoarthritis cell-based therapies. Curr Rheumatol Rep. 2022;24(4):96–110. doi:10.1007/s11926-022-01061-x.
  • Lin Z, Li Z, Li EN, Li X, Del Duke CJ, Shen H, Hao T, O’ Donnell B, Bunnell BA, Goodman SB, Alexander PG. Osteochondral Tissue Chip Derived From iPSCs: Modeling OA Pathologies and Testing Drugs. Front Bioeng Biotechnol. 2019;7:411. doi:10.3389/fbioe.2019.00411.
  • Ding DC, Shyu WC, Lin SZ. Mesenchymal stem cells. Cell Transplant. 2011;20(1):5–14. doi:10.3727/096368910X.
  • Kafienah W, Mistry S, Dickinson SC, Sims TJ, Learmonth I, Hollander AP. Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients. Arthritis & Rheumatism. 2007;56(1):177–87. doi:10.1002/art.22285.
  • Ringe J, Sittinger M. Tissue engineering in the rheumatic diseases. Arthritis Res Ther. 2009;11(1):211. doi:10.1186/ar2572.
  • Gupta PK, Das AK, Chullikana A, Majumdar AS. Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell Res Ther. 2012;3(4):25. doi:10.1186/scrt116.
  • Dahlin RL, Meretoja VV, Ni M, Kasper FK, Mikos AG. Chondrogenic phenotype of articular chondrocytes in monoculture and co-culture with mesenchymal stem cells in flow perfusion. Tissue Engineering Part A. 2014;20(21–22):2883–91. doi:10.1089/ten.tea.2014.0107.
  • Wu L, Prins HJ, Helder MN, van Blitterswijk CA, Karperien M. Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources. Tissue Eng Part A. 2012;18(15–16):1542–51. doi:10.1089/ten.TEA.2011.0715.
  • Vangsness Jr CT, Farr J, Boyd J, Dellaero DT, Mills CR, LeRoux-Williams M. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study. Journal Of Bone And Joint Surgery. 2014;96(2):90–98. doi:10.2106/JBJS.M.00058.
  • Vega A, Martín-Ferrero MA, Del Canto F, Alberca M, García V, Munar A, Orozco L, Soler R, Fuertes JJ, Huguet M. Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: a randomized controlled trial. Transplantation. 2015;99(8):1681–90. doi:10.1097/TP.0000000000000678.
  • Gupta PK, Chullikana A, Rengasamy M, Shetty N, Pandey V, Agarwal V, Wagh SY, Vellotare PK, Damodaran D, Viswanathan P. Efficacy and safety of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells (stempeucel®): preclinical and clinical trial in osteoarthritis of the knee joint. Arthritis Res Ther. 2016;18(1):301. doi:10.1186/s13075-016-1195-7.
  • Muthu S, Mir AA, Kumar R, Yadav V, Jeyaraman M, Khanna M. What is the clinically significant ideal mesenchymal stromal cell count in the management of osteoarthritis of the knee? - meta-analysis of randomized controlled trials. J Clin Orthop Trauma. 2022;25:101744. doi:10.1016/j.jcot.2021.101744.
  • Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, Kim JE, Shim H, Shin JS, Shin IS. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014;32(5):1254–66. doi:10.1002/stem.1634.
  • Pers YM, Rackwitz L, Ferreira R, Pullig O, Delfour C, Barry F, Sensebe L, Casteilla L, Fleury S, Bourin P. Adipose mesenchymal stromal cell-based therapy for severe osteoarthritis of the knee: a phase I dose-escalation trial. Stem Cells Transl Med. 2016;5(7):847–56. doi:10.5966/sctm.2015-0245.
  • Lin YY, Kuan C-Y, Chang C-T, Chuang M-H, Syu W-S, Zhang K-L, Lee C-H, Lin P-C, Dong G-C, Lin F-H. 3D-Cultured adipose-derived stem cell spheres using calcium-alginate scaffolds for osteoarthritis treatment in a mono-iodoacetate-induced rat model. IJMS. 2023;24(8):7062. doi:10.3390/ijms24087062.
  • Romano IR, D’Angeli F, Vicario N, Russo C, Genovese C, Lo Furno D, Mannino G, Tamburino S, Parenti R, Giuffrida R. Adipose-derived mesenchymal stromal cells: a tool for bone and cartilage repair. Bio Medicines. 2023;11(7):1781. doi:10.3390/biomedicines11071781.
  • Muthu S, Patil SC, Jeyaraman N, Jeyaraman M, Gangadaran P, Rajendran RL, Oh EJ, Khanna M, Chung HY, Ahn BC. Comparative effectiveness of adipose-derived mesenchymal stromal cells in the management of knee osteoarthritis: a meta-analysis. World J Orthop. 2023;14(1):23–41. doi:10.5312/wjo.v14.i1.23.
  • Muthu S, Kartheek RR, Jeyaraman N, Rajendran RL, Khanna M, Jeyaraman M, Packkyarathinam RP, Gangadaran P, Ahn BC. Is culture expansion necessary in autologous mesenchymal stromal cell therapy to obtain superior results in the management of knee osteoarthritis?—meta-Analysis of randomized controlled trials. Bio Engineering (Basel). 2021;8(12):220. doi:10.3390/bioengineering8120220.
  • Stromps JP, Paul NE, Rath B, Nourbakhsh M, Bernhagen J, Pallua N. Chondrogenic differentiation of human adipose-derived stem cells: a new path in articular cartilage defect management? Biomed Res Int. 2014;2014:740926. doi:10.1155/2014/740926
  • Vargel İ, Tuncel A, Baysal N, Hartuc-Cevik İ, Korkusuz F. Autologous adipose-derived tissue stromal vascular fraction (AD-tSVF) for knee osteoarthritis. IJMS. 2022;23(21):13517. doi:10.3390/ijms232113517.
  • Dykstra JA, Facile T, Patrick RJ, Francis KR, Milanovich S, Weimer JM, Kota DJ. Concise review: fat and furious: harnessing the full potential of adipose-derived stromal vascular fraction. Stem Cells Translational Medicine. 2017;6(4):1096–108. doi:10.1002/sctm.16-0337.
  • Colombini A, Perucca Orfei C, Kouroupis D, Ragni E, De Luca P, ViganÒ M, Correa D, de Girolamo L. Mesenchymal stem cells in the treatment of articular cartilage degeneration: new biological insights for an old-timer cell. Cytotherapy. 2019;21(12):1179–97. doi:10.1016/j.jcyt.2019.10.004.
  • Lai RC, Arslan F, Lee MM, Sze NSK, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Research. 2010;4(3):214–22. doi:10.1016/j.scr.2009.12.003.
  • Zhang S, Chu WC, Lai RC, Lim SK, Hui JHP, Toh WS. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthritis And Cartilage. 2016;24(12):2135–40. doi:10.1016/j.joca.2016.06.022.
  • Sze SK, de Kleijn DPV, Lai RC, Khia Way Tan E, Zhao H, Yeo KS, Low TY, Lian Q, Lee CN, Mitchell W. Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Molecular & Cellular Proteomics. 2007;6(10):1680–89. doi:10.1074/mcp.M600393-MCP200.
  • Timmers L, Lim SK, Arslan F, Armstrong JS, Hoefer IE, Doevendans PA, Piek JJ, El Oakley RM, Choo A, Lee CN. Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Research. 2008;1(2):129–37. doi:10.1016/j.scr.2008.02.002.
  • Zhu Y, Wang Y, Zhao B, Niu X, Hu B, Li Q, Zhang J, Ding J, Chen Y, Wang Y. Comparison of exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells and synovial membrane-derived mesenchymal stem cells for the treatment of osteoarthritis. Stem Cell Res Ther. 2017;8(1):64. doi:10.1186/s13287-017-0510-9.
  • Cosenza S, Ruiz M, Maumus M, Jorgensen C, Noel D. Pathogenic or therapeutic extracellular vesicles in rheumatic diseases: role of mesenchymal stem cell-derived vesicles. Int J Mol Sci. 2017;18(4):889. doi:10.3390/ijms18040889.
  • Cosenza S, Ruiz M, Toupet K, Jorgensen C, Noel D. Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci Rep. 2017;7(1):16214. doi:10.1038/s41598-017-15376-8.
  • Muthu S, Korpershoek JV, Novais EJ, Tawy GF, Hollander AP, Martin I. Failure of cartilage regeneration: emerging hypotheses and related therapeutic strategies. Nat Rev Rheumatol. 2023;19(7):403–16. doi:10.1038/s41584-023-00979-5.
  • Sun J, Ma X, Chu HT, Feng B, Tuan RS, Jiang Y. Biomaterials and advanced biofabrication techniques in hiPscs based neuromyopathic disease modeling. Front Bioeng Biotechnol. 2019;7:373. doi:10.3389/fbioe.2019.00373.
  • Zhang M. Shi J, Xie M, Wen J, Niibe K, Zhang X, Luo J, Yan R, Zhang Z, Egusa H, Jiang X. Recapitulation of cartilage/bone formation using iPscs via biomimetic 3D rotary culture approach for developmental engineering. Bio Materials. 2020;260:120334. doi:10.1016/j.biomaterials.2020.120334.
  • Tuan RS, Chen AF, Klatt BA. Cartilage regeneration. Journal Of The American Academy Of Orthopaedic Surgeons. 2013;21(5):303–11. doi:10.5435/JAAOS-21-05-303.
  • Zhu Y, Wu X, Liang Y, Gu H, Song K, Zou X, Zhou G. Repair of cartilage defects in osteoarthritis rats with induced pluripotent stem cell derived chondrocytes. BMC Biotechnol. 2016;16(78). doi:10.1186/s12896-016-0306-5.
  • Lach MS, Rosochowicz MA, Richter M, Jagiełło I, Suchorska WM, Trzeciak T. The induced pluripotent stem cells in articular cartilage regeneration and disease modelling: are we ready for their clinical use? Cells. 2022;11(3):529. doi:10.3390/cells11030529.
  • Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science. 2008;322(5903):945–49. doi:10.1126/science.1162494.
  • Zhou W, Freed CR. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells. 2009;27(11):2667–74. doi:10.1002/stem.201.
  • Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka K-I. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011;8(5):409–12. doi:10.1038/nmeth.1591.
  • Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA. Human induced pluripotent stem cells free of vector and transgene sequences. Sci. 2009;324(5928):797–801. doi:10.1126/science.1172482.
  • Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci. 2009;85(8):348–62. doi:10.2183/pjab.85.348.
  • Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322(5903):949–53. doi:10.1126/science.1164270.
  • Warren L, Manos P.D, Ahfeldt T, Loh Y.H, Li H, Lau F, Ebina W, Mandal P.K, Smith Z.D, Meissner A, Daley G.Q. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7(5):618–30. doi:10.1016/j.stem.2010.08.012.
  • Anokye-Danso F, Trivedi C, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber P, Epstein J. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell. 2011;8(4):376–88. doi:10.1016/j.stem.2011.03.001.
  • Turinetto V, Orlando L, Giachino C. Induced pluripotent stem cells: advances in the quest for genetic stability during reprogramming process. Int J Mol Sci. 2017;18(9):1952. doi:10.3390/ijms18091952.
  • Aisenbrey EA, Bilousova G, Payne K, Bryant SJ. Dynamic mechanical loading and growth factors influence chondrogenesis of induced pluripotent mesenchymal progenitor cells in a cartilage-mimetic hydrogel. Biomater Sci. 2019;7(12):5388–403. doi:10.1039/C9BM01081E.
  • Wu CL, Dicks A, Steward N, Tang R, Katz DB, Choi YR, Guilak F. Single cell transcriptomic analysis of human pluripotent stem cell chondrogenesis. Nat Commun. 2021;12(1):362. doi:10.1038/s41467-020-20598-y.
  • Augustyniak E, Trzeciak T, Richter M, Kaczmarczyk J, Suchorska W. The role of growth factors in stem cell-directed chondrogenesis: a real hope for damaged cartilage regeneration. International Orthopaedics (SICOT). 2015;39(5):995–1003. doi:10.1007/s00264-014-2619-0.
  • Deng Y, Sun AX, Overholt KJ, Gary ZY, Fritch MR, Alexander PG, Shen H, Tuan RS, Lin H. Enhancing chondrogenesis and mechanical strength retention in physiologically relevant hydrogels with incorporation of hyaluronic acid and direct loading of TGF-beta. Acta Biomater. 2019;83:167–76. doi:10.1016/j.actbio.2018.11.022.
  • Li Y, Tian AY, Ophene J, Tian MY, Yao Z, Chen S, Li H, Sun X, Du H. TGF-β Stimulates Endochondral Differentiation after Denervation. Int J Med Sci. 2017;14(4):382–89. doi:10.7150/ijms.17364.
  • Xiang S, Lin Z, Makarcyzk MJ, Riewruja K, Zhang Y, Zhang X, Li Z, Clark KL, Li E, Liu S. Differences in the intrinsic chondrogenic potential of human mesenchymal stromal cells and iPSC-derived multipotent cells. Clinical & Translational Med. 2022;12(12):e1112. doi:10.1002/ctm2.1112.
  • Nakamura A, Murata D, Fujimoto R, Tamaki S, Nagata S, Ikeya M, Toguchida J, Nakayama K. Bio-3D printing iPSC-derived human chondrocytes for articular cartilage regeneration. Biofabrication. 2021;13(4):044103. doi:10.1088/1758-5090/ac1c99.
  • Koyama N, Miura M, Nakao K, Kondo E, Fujii T, Taura D, Kanamoto N, Sone M, Yasoda A, Arai H. Human induced pluripotent stem cells differentiated into chondrogenic lineage via generation of mesenchymal progenitor cells. Stem Cells Dev. 2013;22(1):102–13. doi:10.1089/scd.2012.0127.
  • Guzzo RM, Gibson J, Xu RH, Lee FY, Drissi H. Efficient differentiation of human iPSC-derived mesenchymal stem cells to chondroprogenitor cells. J Cell Biochem. 2013;114(2):480–90. doi:10.1002/jcb.24388.
  • Limraksasin P, Kosaka Y, Zhang M, Horie N, Kondo T, Okawa H, Yamada M, Egusa H. Shaking culture enhances chondrogenic differentiation of mouse induced pluripotent stem cell constructs. Sci Rep. 2020;10(1):14996. doi:10.1038/s41598-020-72038-y.
  • Khan NM, Diaz-Hernandez ME, Chihab S, Priyadarshani P, Bhattaram P, Mortensen LJ, Guzzo RM, Drissi H. Differential chondrogenic differentiation between iPSC derived from healthy and OA cartilage is associated with changes in epigenetic regulation and metabolic transcriptomic signatures. Elife. 2023;12. doi:10.7554/eLife.83138.
  • Zhang X, Zhu L, Zhang H, Chen S, Xiao Y. CAR-T cell therapy in hematological malignancies: Current opportunities and challenges. Front Immunol. 2022;13:927153. doi:10.3389/fimmu.2022.927153.
  • Huan T, Chen D, Liu G, Zhang H, Wang X, Wu Z, Wu Y, Xu Q, Yu F. Activation-induced cell death in CAR-T cell therapy. Hum Cell. 2022;35(2):441–47. doi:10.1007/s13577-022-00670-z.
  • Martin JA, Buckwalter JA. The role of chondrocyte senescence in the pathogenesis of osteoarthritis and in limiting cartilage repair. J Bone Joint Surg Am. 2003;85(2):106–10. doi:10.2106/00004623-200300002-00014.
  • Coryell PR, Diekman BO, Loeser RF. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat Rev Rheumatol. 2021;17(1):47–57. doi:10.1038/s41584-020-00533-7.
  • Huynh NPT, Brunger JM, Gloss CC, Moutos FT, Gersbach CA, Guilak F. Genetic engineering of mesenchymal stem cells for differential matrix deposition on 3D woven scaffolds. Tissue Engineering Part A. 2018;24(19–20):1531–44. doi:10.1089/ten.tea.2017.0510.
  • Adkar SS, Wu C-L, Willard VP, Dicks A, Ettyreddy A, Steward N, Bhutani N, Gersbach CA, Guilak F. Step-wise chondrogenesis of human induced pluripotent stem cells and purification via a reporter allele generated by CRISPR-Cas9 genome editing. Stem Cells. 2019;37(1):65–76. doi:10.1002/stem.2931.
  • Zhou X, von der Mark K, Henry S, Norton W, Adams H, de Crombrugghe B. Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS Genet. 2014;10(12):e1004820. doi:10.1371/journal.pgen.1004820.
  • Yang G, Zhu L, Hou N, Lan Y, Wu X-M, Zhou B, Teng Y, Yang X. Osteogenic fate of hypertrophic chondrocytes. Cell Res. 2014;24(10):1266–69. doi:10.1038/cr.2014.111.
  • Kamakura T, Jin Y, Nishio M, Nagata S, Fukuda M, Sun L, Kawai S, Toguchida J. Collagen X is dispensable for hypertrophic differentiation and endochondral ossification of human iPSC-Derived chondrocytes. JBMR plus. 2023;7(5):e10737. doi:10.1002/jbm4.10737.