1,500
Views
7
CrossRef citations to date
0
Altmetric
Research Papers

Diverse selective regimes shape genetic diversity at ADAR genes and at their coding targets

, , , , , , , , & show all
Pages 149-161 | Received 02 Oct 2014, Accepted 09 Dec 2014, Published online: 31 Mar 2015

References

  • Nishikura K. Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 2010; 79:321-349; PMID:20192758; http://dx.doi.org/10.1146/annurev-biochem-060208-105251
  • Bazak L, Haviv A, Barak M, Jacob-Hirsch J, Deng P, Zhang R, Isaacs FJ, Rechavi G, Li JB, Eisenberg E, et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res 2014; 24:365-376; PMID:24347612; http://dx.doi.org/10.1101/gr.164749.113
  • Savva YA, Rieder LE, Reenan RA. The ADAR protein family. Genome Biol 2012; 13:252; PMID:23273215; http://dx.doi.org/10.1186/gb-2012-13-12-252
  • Samuel CE. ADARs: Viruses and innate immunity. Curr Top Microbiol Immunol 2012; 353:163-195; PMID:21809195
  • Slotkin W, Nishikura K. Adenosine-to-inosine RNA editing and human disease. Genome Med 2013; 5:105; PMID:24289319; http://dx.doi.org/10.1186/gm508
  • Rice GI, Kasher PR, Forte GM, Mannion NM, Greenwood SM, Szynkiewicz M, Dickerson JE, Bhaskar SS, Zampini M, Briggs TA, et al. Mutations in ADAR1 cause aicardi-goutieres syndrome associated with a type I interferon signature. Nat Genet 2012; 44:1243-1248; PMID:23001123; http://dx.doi.org/10.1038/ng.2414
  • Daniel C, Silberberg G, Behm M, Ohman M. Alu elements shape the primate transcriptome by cis-regulation of RNA editing. Genome Biol 2014; 15:R28; PMID:24485196; http://dx.doi.org/10.1186/gb-2014-15-2-r28
  • Li JB, Church GM. Deciphering the functions and regulation of brain-enriched A-to-I RNA editing. Nat Neurosci 2013; 16:1518-1522; PMID:24165678; http://dx.doi.org/10.1038/nn.3539
  • Pinto Y, Cohen HY, Levanon EY. Mammalian conserved ADAR targets comprise only a small fragment of the human editosome. Genome Biol 2014; 15:R5; PMID:24393560; http://dx.doi.org/10.1186/gb-2014-15-1-r5
  • Paz-Yaacov N, Levanon EY, Nevo E, Kinar Y, Harmelin A, Jacob-Hirsch J, Amariglio N, Eisenberg E, Rechavi G. Adenosine-to-inosine RNA editing shapes transcriptome diversity in primates. Proc Natl Acad Sci U S A 2010; 107:12174-12179; PMID:20566853; http://dx.doi.org/10.1073/pnas.1006183107
  • Gommans WM, Mullen SP, Maas S. RNA editing: A driving force for adaptive evolution? Bioessays 2009; 31:1137-1145; PMID:19708020; http://dx.doi.org/10.1002/bies.200900045
  • Xu G, Zhang J. Human coding RNA editing is generally nonadaptive. Proc Natl Acad Sci U S A 2014; 111:3769-3774; PMID:24567376; http://dx.doi.org/10.1073/pnas.1321745111
  • Wernersson R, Pedersen AG. RevTrans: Multiple alignment of coding DNA from aligned amino acid sequences. Nucleic Acids Res 2003; 31:3537-3539; PMID:12824361; http://dx.doi.org/10.1093/nar/gkg609
  • Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD. Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 2006; 23:1891-1901; PMID:16818476; http://dx.doi.org/10.1093/molbev/msl051
  • Kosakovsky Pond SL, Frost SD. Not so different after all: A comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 2005; 22:1208-1222; PMID:15703242; http://dx.doi.org/10.1093/molbev/msi105
  • Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, Washietl S, Kheradpour P, Ernst J, Jordan G, Mauceli E, et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 2011; 478:476-482; PMID:21993624; http://dx.doi.org/10.1038/nature10530
  • Yang Z. PAML: A program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 1997; 13:555-556; PMID:9367129
  • Yang Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007; 24:1586-1591; PMID:17483113; http://dx.doi.org/10.1093/molbev/msm088
  • Anisimova M, Bielawski JP, Yang Z. Accuracy and power of bayes prediction of amino acid sites under positive selection. Mol Biol Evol 2002; 19:950-958; PMID:12032251; http://dx.doi.org/10.1093/oxfordjournals.molbev.a004152
  • Yang Z, Wong WS, Nielsen R. Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol 2005; 22:1107-1118; PMID:15689528; http://dx.doi.org/10.1093/molbev/msi097
  • Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky Pond SL. Detecting individual sites subject to episodic diversifying selection. PLoS Genet 2012; 8:e1002764; PMID:22807683; http://dx.doi.org/10.1371/journal.pgen.1002764
  • Yang Z, Nielsen R. Synonymous and nonsynonymous rate variation in nuclear genes of mammals. J Mol Evol 1998; 46:409-418; PMID:9541535; http://dx.doi.org/10.1007/PL00006320
  • Kosakovsky Pond SL, Murrell B, Fourment M, Frost SD, Delport W, Scheffler K. A random effects branch-site model for detecting episodic diversifying selection. Mol Biol Evol 2011; 28:3033-3043; PMID:21670087; http://dx.doi.org/10.1093/molbev/msr125
  • Zhang J, Nielsen R, Yang Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 2005; 22:2472-2479; PMID:16107592; http://dx.doi.org/10.1093/molbev/msi237
  • Anisimova M, Yang Z. Multiple hypothesis testing to detect lineages under positive selection that affects only a few sites. Mol Biol Evol 2007; 24:1219-1228; PMID:17339634; http://dx.doi.org/10.1093/molbev/msm042
  • 1000 Genomes Project Consortium, Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA. A map of human genome variation from population-scale sequencing. Nature 2010; 467:1061-1073; PMID:20981092; http://dx.doi.org/10.1038/nature09534
  • Auton A, Fledel-Alon A, Pfeifer S, Venn O, Segurel L, Street T, Leffler EM, Bowden R, Aneas I, Broxholme J, et al. A fine-scale chimpanzee genetic map from population sequencing. Science 2012; 336:193-198; PMID:22422862; http://dx.doi.org/10.1126/science.1216872
  • Quach H, Wilson D, Laval G, Patin E, Manry J, Guibert J, Barreiro LB, Nerrienet E, Verschoor E, Gessain A, et al. Different selective pressures shape the evolution of toll-like receptors in human and african great ape populations. Hum Mol Genet 2013; 22:4829-4840; PMID:23851028; http://dx.doi.org/10.1093/hmg/ddt335
  • Grossman SR, Andersen KG, Shlyakhter I, Tabrizi S, Winnicki S, Yen A, Park DJ, Griesemer D, Karlsson EK, Wong SH, et al. Identifying recent adaptations in large-scale genomic data. Cell 2013; 152:703-713; PMID:23415221; http://dx.doi.org/10.1016/j.cell.2013.01.035
  • Forni D, Cagliani R, Tresoldi C, Pozzoli U, De Gioia L, Filippi G, Riva S, Menozzi G, Colleoni M, Biasin M, et al. An evolutionary analysis of antigen processing and presentation across different timescales reveals pervasive selection. PLoS Genet 2014; 10:e1004189; PMID:24675550; http://dx.doi.org/10.1371/journal.pgen.1004189
  • Forni D, Cagliani R, Pozzoli U, Colleoni M, Riva S, Biasin M, Filippi G, De Gioia L, Gnudi F, Comi GP, et al. A 175 million year history of T cell regulatory molecules reveals widespread selection, with adaptive evolution of disease alleles. Immunity 2013; 38:1129-1141; PMID:23707475; http://dx.doi.org/10.1016/j.immuni.2013.04.008
  • Barreiro LB, Ben-Ali M, Quach H, Laval G, Patin E, Pickrell JK, Bouchier C, Tichit M, Neyrolles O, Gicquel B, et al. Evolutionary dynamics of human toll-like receptors and their different contributions to host defense. PLoS Genet 2009; 5:e1000562; PMID:19609346; http://dx.doi.org/10.1371/journal.pgen.1000562
  • Fagny M, Patin E, Enard D, Barreiro LB, Quintana-Murci L, Laval G. Exploring the occurrence of classic selective sweeps in humans using whole-genome sequencing data sets. Mol Biol Evol 2014; 31:1850-68; PMID:24694833; http://dx.doi.org\10.1093/molbev/msu118
  • Zeng K, Fu YX, Shi S, Wu CI. Statistical tests for detecting positive selection by utilizing high-frequency variants. Genetics 2006; 174:1431-1439; PMID:16951063; http://dx.doi.org/10.1534/genetics.106.061432
  • Fairfax BP, Humburg P, Makino S, Naranbhai V, Wong D, Lau E, Jostins L, Plant K, Andrews R, McGee C, et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 2014; 343:1246949; PMID:24604202; http://dx.doi.org/10.1126/science.1246949
  • Ramaswami G, Li JB. RADAR: A rigorously annotated database of A-to-I RNA editing. Nucleic Acids Res 2014; 42:D109-13; PMID:24163250; http://dx.doi.org/10.1093/nar/gkt996
  • Wang J, Duncan D, Shi Z, Zhang B. WEB-based GEne SeT AnaLysis toolkit (WebGestalt): Update 2013. Nucleic Acids Res 2013; 41:W77-83; PMID:23703215; http://dx.doi.org/10.1093/nar/gkt439
  • Athanasiadis A, Placido D, Maas S, Brown BA,2nd, Lowenhaupt K, Rich A. The crystal structure of the zbeta domain of the RNA-editing enzyme ADAR1 reveals distinct conserved surfaces among Z-domains. J Mol Biol 2005; 351:496-507; PMID:16023667; http://dx.doi.org/10.1016/j.jmb.2005.06.028
  • Athanasiadis A. Zalpha-domains: At the intersection between RNA editing and innate immunity. Semin Cell Dev Biol 2012; 23:275-280; PMID:22085847; http://dx.doi.org/10.1016/j.semcdb.2011.11.001
  • Poulsen H, Nilsson J, Damgaard CK, Egebjerg J, Kjems J. CRM1 mediates the export of ADAR1 through a nuclear export signal within the Z-DNA binding domain. Mol Cell Biol 2001; 21:7862-7871; PMID:11604520; http://dx.doi.org/10.1128/MCB.21.22.7862-7871.2001
  • Strehblow A, Hallegger M, Jantsch MF. Nucleocytoplasmic distribution of human RNA-editing enzyme ADAR1 is modulated by double-stranded RNA-binding domains, a leucine-rich export signal, and a putative dimerization domain. Mol Biol Cell 2002; 13:3822-3835; PMID:12429827; http://dx.doi.org/10.1091/mbc.E02-03-0161
  • Anderson P, Kedersha N. RNA granules: Post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 2009; 10:430-436; PMID:19461665; http://dx.doi.org/10.1038/nrm2694
  • Masliah G, Barraud P, Allain FH. RNA recognition by double-stranded RNA binding domains: A matter of shape and sequence. Cell Mol Life Sci 2013; 70:1875-1895; PMID:22918483
  • Barraud P, Banerjee S, Mohamed WI, Jantsch MF, Allain FH. A bimodular nuclear localization signal assembled via an extended double-stranded RNA-binding domain acts as an RNA-sensing signal for transportin 1. Proc Natl Acad Sci U S A 2014; 111:E1852-61; PMID:24753571; http://dx.doi.org/10.1073/pnas.1323698111
  • ENCODE Project Consortium, Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489:57-74; PMID:22955616; http://dx.doi.org/10.1038/nature11247
  • Enard D, Messer PW, Petrov DA. Genome-wide signals of positive selection in human evolution. Genome Res 2014; 24:885-95; PMID:24619126; http://dx.doi.org\10.1101/gr.164822.113
  • Fraser HB. Gene expression drives local adaptation in humans. Genome Res 2013; 23:1089-1096; PMID:23539138; http://dx.doi.org/10.1101/gr.152710.112
  • Tomaselli S, Locatelli F, Gallo A. The RNA editing enzymes ADARs: Mechanism of action and human disease. Cell Tissue Res 2014; 356:527-532; PMID:24770896; http://dx.doi.org/10.1007/s00441-014-1863-3
  • Chen JY, Peng Z, Zhang R, Yang XZ, Tan BC, Fang H, Liu CJ, Shi M, Ye ZQ, Zhang YE, et al. RNA editome in rhesus macaque shaped by purifying selection. PLoS Genet 2014; 10:e1004274; PMID:24722121; http://dx.doi.org/10.1371/journal.pgen.1004274
  • Yeo J, Goodman RA, Schirle NT, David SS, Beal PA. RNA editing changes the lesion specificity for the DNA repair enzyme NEIL1. Proc Natl Acad Sci U S A 2010; 107:20715-20719; PMID:21068368; http://dx.doi.org/10.1073/pnas.1009231107
  • Bahn JH, Lee JH, Li G, Greer C, Peng G, Xiao X. Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Res 2012; 22:142-150; PMID:21960545; http://dx.doi.org/10.1101/gr.124107.111
  • Doria M, Neri F, Gallo A, Farace MG, Michienzi A. Editing of HIV-1 RNA by the double-stranded RNA deaminase ADAR1 stimulates viral infection. Nucleic Acids Res 2009; 37:5848-5858; PMID:19651874; http://dx.doi.org/10.1093/nar/gkp604
  • Doria M, Tomaselli S, Neri F, Ciafre SA, Farace MG, Michienzi A, Gallo A. ADAR2 editing enzyme is a novel human immunodeficiency virus-1 proviral factor. J Gen Virol 2011; 92:1228-1232; PMID:21289159; http://dx.doi.org/10.1099/vir.0.028043-0
  • Phuphuakrat A, Kraiwong R, Boonarkart C, Lauhakirti D, Lee TH, Auewarakul P. Double-stranded RNA adenosine deaminases enhance expression of human immunodeficiency virus type 1 proteins. J Virol 2008; 82:10864-10872; PMID:18753201; http://dx.doi.org/10.1128/JVI.00238-08
  • Biswas N, Wang T, Ding M, Tumne A, Chen Y, Wang Q, Gupta P. ADAR1 is a novel multi targeted anti-HIV-1 cellular protein. Virology 2012; 422:265-277; PMID:22104209; http://dx.doi.org/10.1016/j.virol.2011.10.024
  • Sawyer SL, Elde NC. A cross-species view on viruses. Curr Opin Virol 2012; 2:561-568; PMID:22835485; http://dx.doi.org/10.1016/j.coviro.2012.07.003
  • Kantaputra PN, Chinadet W, Ohazama A, Kono M. Dyschromatosis symmetrica hereditaria with long hair on the forearms, hypo/hyperpigmented hair, and dental anomalies: Report of a novel ADAR1 mutation. Am J Med Genet A 2012; 158A:2258-2265; PMID:22821605; http://dx.doi.org/10.1002/ajmg.a.35488
  • Sharma R, Wang Y, Zhou P, Steinman RA, Wang Q. An essential role of RNA editing enzyme ADAR1 in mouse skin. J Dermatol Sci 2011; 64:70-72; PMID:21788117; http://dx.doi.org/10.1016/j.jdermsci.2011.06.013
  • Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, Birney E. EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Res 2009; 19:327-335; PMID:19029536; http://dx.doi.org/10.1101/gr.073585.107
  • Guindon S, Delsuc F, Dufayard JF, Gascuel O. Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol 2009; 537:113-137; PMID:19378142; http://dx.doi.org/10.1007/978-1-59745-251-9_6
  • Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: Fast selection of best-fit models of protein evolution. Bioinformatics 2011; 27:1164-1165; PMID:21335321; http://dx.doi.org/10.1093/bioinformatics/btr088
  • Delport W, Poon AF, Frost SD, Kosakovsky Pond SL. Datamonkey 2010: A suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 2010; 26:2455-2457; PMID:20671151; http://dx.doi.org/10.1093/bioinformatics/btq429
  • Wilson DJ, Hernandez RD, Andolfatto P, Przeworski M. A population genetics-phylogenetics approach to inferring natural selection in coding sequences. PLoS Genet 2011; 7:e1002395; PMID:22144911; http://dx.doi.org/10.1371/journal.pgen.1002395
  • Cereda M, Sironi M, Cavalleri M, Pozzoli U. GeCo++: A C++ library for genomic features computation and annotation in the presence of variants. Bioinformatics 2011; 27:1313-1315; PMID:21398667; http://dx.doi.org/10.1093/bioinformatics/btr123
  • Thornton K. Libsequence: A C++ class library for evolutionary genetic analysis. Bioinformatics 2003; 19:2325-2327; PMID:14630667; http://dx.doi.org/10.1093/bioinformatics/btg316
  • Wright S. Genetical structure of populations. Nature 1950;166:247-249; PMID:15439261; http://dx.doi.org/10.1038/166247a0
  • Fay JC, Wu CI. Hitchhiking under positive darwinian selection. Genetics 2000; 155:1405-1413; PMID:10880498
  • Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O'Donnell CJ, de Bakker PI. SNAP: A web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 2008; 24:2938-2939; PMID:18974171; http://dx.doi.org/10.1093/bioinformatics/btn564
  • Cooper GM, Stone EA, Asimenos G, NISC Comparative Sequencing Program, Green ED, Batzoglou S, Sidow A. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res 2005; 15:901-913; PMID:15965027; http://dx.doi.org/10.1101/gr.3577405

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.