1,136
Views
10
CrossRef citations to date
0
Altmetric
Point-of-View

Identification of the Drosophila X chromosome: The long and short of it

&
Pages 1088-1093 | Received 22 Jul 2015, Accepted 21 Aug 2015, Published online: 25 Sep 2015

References

  • Charlesworth B. The evolution of sex chromosomes. Science 1991; 251:1030-3; PMID:1998119; http://dx.doi.org/10.1126/science.1998119
  • Lucchesi J, Kelly W, Panning B. Chromatin remodeling in dosage compensation. Ann Rev Genet 2005; 39:615-51; http://dx.doi.org/10.1146/annurev.genet.39.073003.094210
  • Deng X, Hiatt JB, Nguyen DK, Ercan S, Sturgill D, Hillier LW, Schlesinger F, Davis CA, Reinke VJ, Gingeras TR, et al. Evidence for compensatory upregulation of exressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster. Nat Genet 2011; 43:1179-85; http://dx.doi.org/10.1038/ng.948
  • Hall LL, Lawrence JB. XIST RNA and architecture of the inactive X chromosome: implications for the repeat genome. Cold Spring Harb Symp Quant Biol 2010; 75:345-56; http://dx.doi.org/10.1101/sqb.2010.75.030
  • Leung KN, Panning B. X-inactivation: Xist RNA uses chromosome contacts to coat the X. Curr Biol 2014; 24:R80-2; PMID:24456982; http://dx.doi.org/10.1016/j.cub.2013.11.052
  • Kong Y, Meller VH. How to get extra performance from a chromosome: recognition and modification of the X chromosome in male Drosophila melanogaster. Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics: John Wiley & Sons, Ltd, 2007; 15
  • Kelley R, Solovyeva I, Lyman L, Richman R, Solovyev V, Kuroda M. Expression of MSL2 causes assembly of dosage compensation regulators on the X chromosomes and female lethality in Drosophila. Cell 1995; 81:867-77; PMID:7781064; http://dx.doi.org/10.1016/0092-8674(95)90007-1
  • Alekseyenko AA, Larschan E, Lai WR, Park PJ, Kuroda MI. High-resolution ChIP-chip analysis reveals that the Drosophila MSL complex selectively identifies active genes on the male X chromosome. Genes Dev 2006; 20:848-57; PMID:16547173; http://dx.doi.org/10.1101/gad.1400206
  • Akhtar A, Becker P. Activation of transcription through histone H4 acetylation by MOF, and acetyltransferase essential for dosage compensation in Drosophila. Mol Cell 2000; 5:367-75; PMID:10882077; http://dx.doi.org/10.1016/S1097-2765(00)80431-1
  • Smith ER, Pannuti A, Gu W, Steurnagel A, Cook RJ, Allis CD, Lucchesi JC. The Drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol Cell Biol 2000; 20:312-18; http://dx.doi.org/10.1128/MCB.20.1.312-318.2000
  • Shogren-Knaak M, Ishii H, Sun J-M, Pazin MJ, Davie JR, Peterson CL. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 2006; 311:844-47; PMID:16469925; http://dx.doi.org/10.1126/science.1124000
  • Liu Y, Lu C, Yang Y, Fan Y, Yang R, Liu CF, Korolev N, Nordenskiold L. Influence of histone tails and H4 tail acetylations on nucleosome-nucleosome interactions. J Mol Biol 2011; 414:749-64; http://dx.doi.org/10.1016/j.jmb.2011.10.031
  • Larschan E, Bishop EP, Kharchenko PV, Core LJ, Lis JT, Park PJ, Kuroda MI. X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila. Nature 2011; 471:115-8; PMID:21368835; http://dx.doi.org/10.1038/nature09757
  • Ferrari F, Plachetka A, Alekseyenko AA, Jung YL, Ozsolak F, Kharchenko PV, Park PJ, Kuroda MI. Jump start and gain model for dosage compensation in Drosophila based on direct sequencing of nascent transcripts. Cell Rep 2013; 5:629-36; PMID:24183666; http://dx.doi.org/10.1016/j.celrep.2013.09.037
  • Conrad T, Cavalli FMG, Vaquerizas JM, Luscombe NM, Akhtar A. Drosophila dosage compensation involves enhanced Pol II recruitment to male X-linked promoters. Science 2012; 337:742-46; PMID:22821985; http://dx.doi.org/10.1126/science.1221428
  • Wu L, Li L, Zhou B, Qin Z, Dou Y. H2B ubiquitylation promotes RNA Pol II processivity via PAF1 and pTEFb. Mol Cell 2014; 54:920-31; PMID:24837678; http://dx.doi.org/10.1016/j.molcel.2014.04.013
  • Wu L, Zee BM, Wang Y, Garcia BA, Dou Y. The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3 K4 and K79 methylation. Mol Cell 2011; 43:132-44; PMID:21726816; http://dx.doi.org/10.1016/j.molcel.2011.05.015
  • Lyman LM, Copps K, Rastelli L, Kelley RL, Kuroda MI. Drosophila Male-Specific Lethal 2 protein: structure/function analysis and dependence on MSL1 for chromosome association. Genetics 1997; 147:1743-53; PMID:9409833
  • Alekseyenko AA, Peng S, Larschan E, Gorchakov AA, Lee OK, Kharchenko P, McGrath SD, Wang CI, Mardis ER, Park PJ, et al. A sequence motif within chromatin entry sites directs MSL establishment on the Drosophila X chromosome. Cell 2008; 134:599-609; PMID:18724933; http://dx.doi.org/10.1016/j.cell.2008.06.033
  • Straub T, Grimaud C, Gilfillan GD, Mitterweger A, Becker PB. The chromosomal high-affinity binding sites for the Drosophila dosage compensation complex. PLoS Genet 2008; 4:e1000302; PMID:19079572; http://dx.doi.org/10.1371/journal.pgen.1000302
  • Soruco MM, Chery J, Bishop EP, Siggers T, Tolstorukov MY, Leydon AR, Sugden AU, Goebel K, Feng J, Xia P, et al. The CLAMP protein links the MSL complex to the X chromosome during Drosophila dosage compensation. Genes Dev 2013; 27:1551-6; PMID:23873939; http://dx.doi.org/10.1101/gad.214585.113
  • Kind J, Akhtar A. Cotranscriptional recruitment of the dosage compensation complex to X-linked target genes. Genes Dev 2007; 21:2030-40; PMID:17699750; http://dx.doi.org/10.1101/gad.430807
  • Larschan E, Alekseyenko AA, Gortchakov AA, Peng S, Li B, Yang P, Workman JL, Park PJ, Kuroda MI. MSL complex is attracted to genes marked by H3K36 trimethylation using a sequence-independent mechanism. Mol Cell 2007; 28:121-33; PMID:17936709; http://dx.doi.org/10.1016/j.molcel.2007.08.011
  • Sural TH, Peng S, Li B, Workman JL, Park PJ, Kuroda MI. The MSL3 chromodomain directs a key targeting step for dosage compensation of the Drosophila melanogaster X chromosome. Nat Struct Mol Biol 2008; 15:1318-25; PMID:19029895; http://dx.doi.org/10.1038/nsmb.1520
  • Bell O, Conrad T, Kind J, Wirbelauer C, Akhtar A, Schubeler D. Transcription-coupled methylation of histone H3 at lysine 36 regulates dosage compensation by enhancing recruitment of the MSL complex in Drosophila melanogaster. Mol Cell Biol 2008; 28:3401-9; PMID:18347056; http://dx.doi.org/10.1128/MCB.00006-08
  • Gelbart ME, Kuroda MI. Drosophila dosage compensation: a complex voyage to the X chromosome. Development 2009; 136:1399-410; PMID:19363150; http://dx.doi.org/10.1242/dev.029645
  • Menon DU, Meller VH. A role for siRNA in X-chromosome dosage compensation in Drosophila melanogaster. Genetics 2012; 191:1023-8; PMID:22554892; http://dx.doi.org/10.1534/genetics.112.140236
  • Meller VH, Wu KH, Roman G, Kuroda M, David R. roX1 RNA paints the X chromosome of male Drosophila and is regulated by the dosage compensation system. Cell 1997; 88:445-57; PMID:9038336; http://dx.doi.org/10.1016/S0092-8674(00)81885-1
  • Meller VH, Rattner B. The roX genes encode redundant male specific lethal transcripts required for targeting of the MSL complex. EMBO J 2002; 21:1084-91; PMID:11867536; http://dx.doi.org/10.1093/emboj/21.5.1084
  • Deng X, Meller VH. roX RNAs are required for increased expression of X-linked genes in Drosophila melanogaster males. Genetics 2006; 174:1859-66; PMID:17028315; http://dx.doi.org/10.1534/genetics.106.064568
  • Oh H, Park Y, Kuroda MI. Local spreading of MSL complexes from roX genes on the Drosophila X chromosome. Genes Dev 2003; 17:1334-9; PMID:12782651; http://dx.doi.org/10.1101/gad.1082003
  • Kageyama Y, Mengus G, Gilfillan G, Kennedy HG, Stuckenholz C, Kelley RL, Becker PB, Kuroda MI. Association and spreading of the Drosophila dosage compensation complex from a discrete roX1 chromatin entry site. EMBO J 2001; 20:2236-45; PMID:11331589; http://dx.doi.org/10.1093/emboj/20.9.2236
  • Kelley R, Meller VH, Gordadze P, Roman G, Davis R, Kuroda M. Epigenetic spreading of the Drosophila dosage compensation complex from roX RNA genes into flanking chromatin. Cell 1999; 98:513-22; PMID:10481915; http://dx.doi.org/10.1016/S0092-8674(00)81979-0
  • Fagegaltier D, Bouge AL, Berry B, Poisot E, Sismeiro O, Coppee JY, Theodore L, Voinnet O, Antoniewski C. The endogenous siRNA pathway is involved in heterochromatin formation in Drosophila. Proc Natl Acad Sci USA 2009; 106:21258-63; PMID:19948966; http://dx.doi.org/10.1073/pnas.0809208105
  • Brower-Toland B, Findley SD, Jiang L, Liu L, Yin H, Dus M, Zhou P, Elgin SCR, Lin H. Drosophila PIWI associates with chromatin and interacts directly with HP1a. Genes Dev 2007; 21:2300-11; PMID:17875665; http://dx.doi.org/10.1101/gad.1564307
  • Gu T, Elgin SC. Maternal depletion of Piwi, a component of the RNAi system, impacts heterochromatin formation in Drosophila. PLoS Genet 2013; 9:e1003780; PMID:24068954; http://dx.doi.org/10.1371/journal.pgen.1003780
  • Pal-Bhadra M, Leibovitch Ba, Gandhi SG, Rao M, Bhadra U, Birchler Ja, Elgin SCR. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 2004; 303:669-72; PMID:14752161; http://dx.doi.org/10.1126/science.1092653
  • Cernilogar FM, Onorati MC, Kothe GO, Burroughs AM, Parsi KM, Breiling A, Lo Sardo F, Saxena A, Miyoshi K, Siomi H, et al. Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. Nature 2011; 480:391-5; PMID:22056986; http://dx.doi.org/10.1038/nature10492
  • Buhler M, Verdel A, Moazed D. Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell 2006; 125:873-86; PMID:16751098; http://dx.doi.org/10.1016/j.cell.2006.04.025
  • Cam HP, Sugiyama T, Chen ES, Chen X, FitzGerald PC, Grewal SI. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat Genet 2005; 37:809-19; PMID:15976807; http://dx.doi.org/10.1038/ng1602
  • Wang CI, Alekseyenko AA, LeRoy G, Elia AE, Gorchakov AA, Britton LM, Elledge SJ, Kharchenko PV, Garcia BA, Kuroda MI. Chromatin proteins captured by ChIP-mass spectrometry are linked to dosage compensation in Drosophila. Nat Structural Mol Biol 2013; 20:202-9; http://dx.doi.org/10.1038/nsmb.2477
  • Verdel A, Vavasseur A, Le Gorrec M, Touat-Todeschini L. Common themes in siRNA-mediated epigenetic silencing pathways. Int J Dev Biol 2009; 53:245-57; http://dx.doi.org/10.1387/ijdb.082691av
  • Kuhn GCS, Küttler H, Moreira-Filho O, Heslop-Harrison JS. The 1.688 repetitive DNA of drosophila: Concerted evolution at different genomic scales and association with genes. Mol Biol Evolution 2012; 29:7-11; http://dx.doi.org/10.1093/molbev/msr173
  • DiBartolomeis SM, Tartof KD, Jackson FR. A superfamily of Drosophila satellite related (SR) DNA repeats restricted to the X chromosome euchromatin. Nucleic Acids Res 1992; 20:1113-6; PMID:1549474; http://dx.doi.org/10.1093/nar/20.5.1113
  • Menon DU, Coarfa C, Xiao W, Gunaratne PH, Meller VH. siRNAs from an X-linked satellite repeat promote X-chromosome recognition in Drosophila melanogaster. Proc Natl Acad Sci USA 2014; 111:16460-5; PMID:25368194; http://dx.doi.org/10.1073/pnas.1410534111
  • Usakin L, Abad J, Vagin VV, de Pablos B, Villasante A, Gvozdev VA. Transcription of the 1.688 satellite DNA family is under the control of RNA interference machinery in Drosophila melanogaster ovaries. Genetics 2007; 176:1343-49; PMID:17409066; http://dx.doi.org/10.1534/genetics.107.071720
  • Kuhn G, Kuttler H, Moreira-Filho O, Heslop-Harrison J. The 1.688 repetitive DNA of Drosophila: concerted evolution at different genomic scales and association with genes. Mol Biol Evol 2011; 29(1):7-11
  • Gallach M. Recurrent turnover of chromosome-specific satellites in Drosophila. Genome Biol Evol 2014; 6:1279-86; http://dx.doi.org/10.1093/gbe/evu104
  • Meller VH. Initiation of dosage compensation in Drosophila embryos depends on expression of the roX RNAs. Mech Dev 2003; 120:759-67; http://dx.doi.org/10.1016/S0925-4773(03)00157-6
  • Wang CI, Alekseyenko Aa, LeRoy G, Elia AEH, Gorchakov Aa, Britton L-MP, Elledge SJ, Kharchenko PV, Garcia Ba, Kuroda MI. Chromatin proteins captured by ChIP-mass spectrometry are linked to dosage compensation in Drosophila. Nat Struct Mol Biol 2013; 20:202-9; http://dx.doi.org/10.1038/nsmb.2477
  • Su M, Han D, Boyd-Kirkup J, Yu X, Han JDJ. Evolution of Alu Elements toward Enhancers. Cell Rep 2014; 7:376-85; PMID:24703844; http://dx.doi.org/10.1016/j.celrep.2014.03.011
  • Johnson KD, Grass JA, Park C, Im H, Choi K, Bresnick EH. Highly restricted localization of RNA polymerase II within a locus control region of a tissue-specific chromatin domain. Mol Cell Biol 2003; 23:6484-93; PMID:12944475; http://dx.doi.org/10.1128/MCB.23.18.6484-6493.2003
  • Lam MTY, Li W, Rosenfeld MG, Glass CK. Enhancer RNAs and regulated transcriptional programs. Trends Biochem Sci 2014; 39:170-82; http://dx.doi.org/10.1016/j.tibs.2014.01.002
  • Mousavi K, Zare H, Dell'Orso S, Grontved L, Gutierrez-Cruz G, Derfoul A, Hager G, Sartorelli V. ERNAs Promote Transcription by Establishing Chromatin Accessibility at Defined Genomic Loci. Mol Cell 2013; 51:606-17; PMID:23993744; http://dx.doi.org/10.1016/j.molcel.2013.07.022
  • Cernilogar FM, Onorati MC, Kothe GO, Burroughs AM, Parsi KM, Breiling A, Sardo FL, Saxena A, Miyoshi K, Siomi H, et al. Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. Nature 2011; 480:391-5; PMID:22056986; http://dx.doi.org/10.1038/nature10492
  • Moshkovich N, Nisha P, Boyle PJ, Thompson BA, Dale RK, Lei EP. RNAi-independent role for Argonaute2 in CTCF/CP190 chromatin insulator function. Genes Dev 2011; 25:1686-701; PMID:21852534; http://dx.doi.org/10.1101/gad.16651211
  • Portnoy V, Huang V, Place RF, Li LC. Small RNA and transcriptional upregulation. Wiley Interdiscip Rev RNA 2011; 2:748-60; PMID:21823233; http://dx.doi.org/10.1002/wrna.90
  • Yin H, Lin H. An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature 2007; 450:304-8; PMID:17952056; http://dx.doi.org/10.1038/nature06263
  • Nègre N, Brown CD, Ma L, Bristow CA, Miller SW, Wagner U, Kheradpour P, Eaton ML, Loriaux P, Sealfon R, et al. A cis-regulatory map of the Drosophila genome. Nature 2011; 471:527-31; http://dx.doi.org/10.1038/nature09990
  • Csink AK, Henikoff S. Something from nothing: the evolution and utility of satellite repeats. Trends Genet 1998; 14:200-4; http://dx.doi.org/10.1016/S0168-9525(98)01444-9
  • Ferree PM, Barbash DA. Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLoS Biol 2009; 7:e1000234; PMID:19859525; http://dx.doi.org/10.1371/journal.pbio.1000234
  • Käs E, Laemmli UK. In vivo topoisomerase II cleavage of the Drosophila histone and satellite III repeats: DNA sequence and structural characteristics. EMBO J 1992; 11:705-16
  • Cugusi S, Ramos E, Ling H, Yokoyama R, Luk KM, Lucchesi JC. Topoisomerase II plays a role in dosage compensation inDrosophila. Transcription 2014; 4:238-50; http://dx.doi.org/10.4161/trns.26185
  • Furuhashi H, Nakajima M, Hirose S. DNA supercoiling factor contributes to dosage compensation in Drosophila. Development 2006; 133:4475-83; PMID:17035293; http://dx.doi.org/10.1242/dev.02620
  • Mendjan S, Taipale M, Kind J, Holz H, Gebhardt P, Schelder M, Vermeulen M, Buscaino A, Duncan K, Mueller J, et al. Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol Cell 2006; 21:811-23; PMID:16543150; http://dx.doi.org/10.1016/j.molcel.2006.02.007
  • Vaquerizas JM, Suyama R, Kind J, Miura K, Luscombe NM, Akhtar A. Nuclear pore proteins nup153 and megator define transcriptionally active regions in the Drosophila genome. PLoS Genet 2010; 6:e1000846; PMID:20174442; http://dx.doi.org/10.1371/journal.pgen.1000846
  • Grimaud C, Becker PB. The dosage compensation complex shapes the conformation of the X chromosome in Drosophila. Genes Dev 2009; 23:2490-5; PMID:19884256; http://dx.doi.org/10.1101/gad.539509
  • de Wit E, de Laat W. A decade of 3C technologies: insights into nuclear organization. Genes Dev 2012; 26:11-24; PMID:22215806; http://dx.doi.org/10.1101/gad.179804.111
  • Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, et al. A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Cell 2014; 159:1665-80; PMID:25497547; http://dx.doi.org/10.1016/j.cell.2014.11.021
  • Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay A, Cavalli G. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 2012; 148:458-72; PMID:22265598; http://dx.doi.org/10.1016/j.cell.2012.01.010
  • O'Hare K, Chadwick B, Constantinou A, Davis A, Mitchelson A, Tudor M. A 5.9-kb tandem repeat at the euchromatin-heterochromatin boundary of the X chromosome of Drosophila melanogaster. Mol Genet Genomics 2002; 267:647-55; http://dx.doi.org/10.1007/s00438-002-0698-x
  • Horakova AH, Moseley SC, McLaughlin CR, Tremblay DC, Chadwick BP. The macrosatellite DXZ4 mediates CTCF-dependent long-range intrachromosomal interactions on the human inactive X chromosome. Human Mol Genet 2012; 21:4367-77; http://dx.doi.org/10.1093/hmg/dds270
  • Ottaviani A, Rival-Gervier S, Boussouar A, Foerster AM, Rondier D, Sacconi S, Desnuelle C, Gilson E, Magdinier F. The D4Z4 macrosatellite repeat acts as a CTCF and A-type lamins-dependent insulator in Facio-Scapulo-Humeral dystrophy. PLoS Genet 2009; 5:e1000394; PMID:19247430; http://dx.doi.org/10.1371/journal.pgen.1000394
  • Rival-Gervier S, Lo MY, Khattak S, Pasceri P, Lorincz MC, Ellis J. Kinetics and epigenetics of retroviral silencing in mouse embryonic stem cells defined by deletion of the D4Z4 element. Mol Ther 2013; 21:1536-50; http://dx.doi.org/10.1038/mt.2013.131
  • Lei EP, Corces VG. A long-distance relationship between RNAi and Polycomb. Cell 2006; 124:886-8; PMID:16530034; http://dx.doi.org/10.1016/j.cell.2006.02.026
  • Kuhn E, Viering M, Rhodes K, Geyer P. A test of inuslator interactions in Drosophila. EMBO J 2003; 22:2463-71; http://dx.doi.org/10.1093/emboj/cdg241
  • Henikoff S, Ahmed K, Malik H. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 2001; 293:1098-102; PMID:11498581; http://dx.doi.org/10.1126/science.1062939
  • Abad JP, Agudo M, Molina I, Losada A, Ripoll P, Villasante A. Pericentromeric regions containing 1.688 satellite DNA sequences show anti-kinetochore antibody staining in prometaphase chromosomes of Drosophila melanogaster. Mol General Genet MGG 2000; 264:371-7; PMID:11129040; http://dx.doi.org/10.1007/s004380000331
  • Larracuente AM. The organization and evolution of the Responder satellite in species of the Drosophila melanogaster group: dynamic evolution of a target of meiotic drive. BMC Evol Biol 2014; 14:233; http://dx.doi.org/10.1186/s12862-014-0233-9