1,390
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

A human haploid gene trap collection to study lncRNAs with unusual RNA biology

, , , &
Pages 196-220 | Received 07 Aug 2015, Accepted 16 Oct 2015, Published online: 23 Feb 2016

References

  • Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell 2013; 154:26–46; PMID:23827673; http://dx.doi.org/10.1016/j.cell.2013.06.020
  • Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 2015; 47(3):199–208; PMID:25599403; http://dx.doi.org/10.1007/82_2015_444
  • Cheetham SW, Gruhl F, Mattick JS, Dinger ME. Long noncoding RNAs and the genetics of cancer. Br J Cancer 2013; 108:2419–25; PMID:23660942; http://dx.doi.org/10.1038/bjc.2013.233
  • Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell 2013; 152:1298–307; PMID:23498938; http://dx.doi.org/10.1016/j.cell.2013.02.012
  • Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC, Laxman B, Asangani IA, Grasso CS, Kominsky HD, et al. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 2011; 29:742–9; PMID:21804560; http://dx.doi.org/10.1038/nbt.1914
  • Roth A, Diederichs S. Long Noncoding RNAs in Lung Cancer. Curr Top Microbiol Immunol 2015; PMID:26037047
  • Meng L, Ward AJ, Chun S, Bennett CF, Beaudet AL, Rigo F. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature 2015; 518:409–12; PMID:25470045; http://dx.doi.org/10.1038/nature13975
  • Wahlestedt C. Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat Rev Drug Discov 2013; 12:433–46; PMID:23722346; http://dx.doi.org/10.1038/nrd4018
  • Roberts TC, Wood MJ. Therapeutic targeting of non-coding RNAs. Essays Biochem 2013; 54:127–45; PMID:23829532; http://dx.doi.org/10.1042/bse0540127
  • Quinodoz S, Guttman M. Long noncoding RNAs: an emerging link between gene regulation and nuclear organization. Trends Cell Biol 2014; 24:651–63; PMID:25441720; http://dx.doi.org/10.1016/j.tcb.2014.08.009
  • Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010; 465:1033–8; PMID:20577206; http://dx.doi.org/10.1038/nature09144
  • Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010; 464:1071–6; PMID:20393566; http://dx.doi.org/10.1038/nature08975
  • Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA, et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 2011; 472:120–4; PMID:21423168; http://dx.doi.org/10.1038/nature09819
  • Latos PA, Pauler FM, Koerner MV, Senergin HB, Hudson QJ, Stocsits RR, Allhoff W, Stricker SH, Klement RM, Warczok KE, et al. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 2012; 338:1469–72; PMID:23239737; http://dx.doi.org/10.1126/science.1228110
  • Kornienko AE, Guenzl PM, Barlow DP, Pauler FM. Gene regulation by the act of long non-coding RNA transcription. BMC Biol 2013; 11:59; PMID:23721193; http://dx.doi.org/10.1186/1741-7007-11-59
  • Chu C, Spitale RC, Chang HY. Technologies to probe functions and mechanisms of long noncoding RNAs. Nat Struct Mol Biol 2015; 22:29–35; PMID:25565030; http://dx.doi.org/10.1038/nsmb.2921
  • Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 2011; 25:1915–27; PMID:21890647; http://dx.doi.org/10.1101/gad.17446611
  • Cabili MN, Dunagin MC, McClanahan PD, Biaesch A, Padovan-Merhar O, Regev A, Rinn JL, Raj A. Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol 2015; 16:20; PMID:25630241; http://dx.doi.org/10.1186/s13059-015-0586-4
  • Tilgner H, Knowles DG, Johnson R, Davis CA, Chakrabortty S, Djebali S, Curado J, Snyder M, Gingeras TR, Guigó R. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res 2012; 22:1616–25; PMID:22955974; http://dx.doi.org/10.1101/gr.134445.111
  • Seidl CI, Stricker SH, Barlow DP. The imprinted Air ncRNA is an atypical RNAPII transcript that evades splicing and escapes nuclear export. Embo J 2006; 25:3565–75; PMID:16874305; http://dx.doi.org/10.1038/sj.emboj.7601245
  • Kelley D, Rinn J. Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol 2012; 13:R107; PMID:23181609; http://dx.doi.org/10.1186/gb-2012-13-11-r107
  • Hacisuleyman E, Goff LA, Trapnell C, Williams A, Henao-Mejia J, Sun L, McClanahan P, Hendrickson DG, Sauvageau M, Kelley DR, et al. Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struct Mol Biol 2014; 21:198–206; PMID:24463464; http://dx.doi.org/10.1038/nsmb.2764
  • Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 2011; 477:295–300; PMID:21874018; http://dx.doi.org/10.1038/nature10398
  • Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 2011; 147:1537–50; PMID:22196729; http://dx.doi.org/10.1016/j.cell.2011.11.055
  • Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 2010; 39:925–38; PMID:20797886; http://dx.doi.org/10.1016/j.molcel.2010.08.011
  • Ohrt T, Muetze J, Svoboda P, Schwille P. Intracellular localization and routing of miRNA and RNAi pathway components. Curr Top Med Chem 2012; 12:79–88; PMID:22196276; http://dx.doi.org/10.2174/156802612798919132
  • Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014; 32:347–55; PMID:24584096; http://dx.doi.org/10.1038/nbt.2842
  • Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C, Sanchez-Gomez DB, Hacisuleyman E, Li E, Spence M, et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife 2013; 2:e01749; PMID:24381249; http://dx.doi.org/10.7554/eLife.01749
  • Yin Y, Yan P, Lu J, Song G, Zhu Y, Li Z, Zhao Y, Shen B, Huang X, Zhu H, et al. Opposing roles for the lncRNA haunt and its genomic locus in regulating hoxa gene activation during embryonic stem cell differentiation. Cell Stem Cell 2015; 16:504–16; PMID:25891907; http://dx.doi.org/10.1016/j.stem.2015.03.007
  • Zhang B, Arun G, Mao YS, Lazar Z, Hung G, Bhattacharjee G, Xiao X, Booth CJ, Wu J, Zhang C, et al. The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Reports 2012; 2:111–23; PMID:22840402; http://dx.doi.org/10.1016/j.celrep.2012.06.003
  • Han J, Zhang J, Chen L, Shen B, Zhou J, Hu B, Du Y, Tate PH, Huang X, Zhang W. Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9. RNA Biol 2014; 11:829–35; PMID:25137067; http://dx.doi.org/10.4161/rna.29624
  • Bassett AR, Akhtar A, Barlow DP, Bird AP, Brockdorff N, Duboule D, Ephrussi A, Ferguson-Smith AC, Gingeras TR, Haerty W, et al. Considerations when investigating lncRNA function in vivo. Elife 2014; 3:e03058; PMID:25124674; http://dx.doi.org/10.7554/eLife.03058
  • Skarnes WC, von Melchner H, Wurst W, Hicks G, Nord AS, Cox T, Young SG, Ruiz P, Soriano P, Tessier-Lavigne M, et al. A public gene trap resource for mouse functional genomics. Nat Genet 2004; 36:543–4; PMID:15167922; http://dx.doi.org/10.1038/ng0604-543
  • Stanford WL, Cohn JB, Cordes SP. Gene-trap mutagenesis: past, present and beyond. Nat Rev Genet 2001; 2:756–68; PMID:11584292; http://dx.doi.org/10.1038/35093548
  • Schuster-Gossler K, Simon-Chazottes D, Guenet JL, Zachgo J, Gossler A. Gtl2lacZ, an insertional mutation on mouse chromosome 12 with parental origin-dependent phenotype. Mamm Genome 1996; 7:20–4; PMID:8903723; http://dx.doi.org/10.1007/s003359900006
  • Barlow DP, Bartolomei MS. Genomic imprinting in mammals. Cold Spring Harb Perspect Biol 2014; 6:a018382; PMID:24492710; http://dx.doi.org/10.1101/cshperspect.a018382
  • Kanduri C. Long noncoding RNAs: Lessons from genomic imprinting. Biochim Biophys Acta 2015; PMID:26004516; http://dx.doi.org/10.1016/j.bbagrm.2015.05.006
  • da Rocha ST, Edwards CA, Ito M, Ogata T, Ferguson-Smith AC. Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet 2008; 24:306–16; PMID:18471925; http://dx.doi.org/10.1016/j.tig.2008.03.011
  • Benetatos L, Vartholomatos G, Hatzimichael E. DLK1-DIO3 imprinted cluster in induced pluripotency: landscape in the mist. Cell Mol Life Sci 2014; 71:4421–30; PMID:25098353; http://dx.doi.org/10.1007/s00018-014-1698-9
  • Sleutels F, Zwart R, Barlow DP. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 2002; 415:810–3; PMID:11845212; http://dx.doi.org/10.1038/415810a
  • Mancini-Dinardo D, Steele SJ, Levorse JM, Ingram RS, Tilghman SM. Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev 2006; 20:1268–82; PMID:16702402; http://dx.doi.org/10.1101/gad.1416906
  • Meng L, Person RE, Huang W, Zhu PJ, Costa-Mattioli M, Beaudet AL. Truncation of Ube3a-ATS unsilences paternal Ube3a and ameliorates behavioral defects in the Angelman syndrome mouse model. PLoS Genet 2013; 9:e1004039; PMID:24385930; http://dx.doi.org/10.1371/journal.pgen.1004039
  • Shin JY, Fitzpatrick GV, Higgins MJ. Two distinct mechanisms of silencing by the KvDMR1 imprinting control region. Embo J 2008; 27:168–78; PMID:18079696; http://dx.doi.org/10.1038/sj.emboj.7601960
  • Gutschner T, Baas M, Diederichs S. Noncoding RNA gene silencing through genomic integration of RNA destabilizing elements using zinc finger nucleases. Genome Res 2011; 21:1944–54; PMID:21844124; http://dx.doi.org/10.1101/gr.122358.111
  • Burckstummer T, Banning C, Hainzl P, Schobesberger R, Kerzendorfer C, Pauler FM, Chen D, Them N, Schischlik F, Rebsamen M, et al. A reversible gene trap collection empowers haploid genetics in human cells. Nat Methods 2013; 10:965–71; PMID:24161985; http://dx.doi.org/10.1038/nmeth.2609
  • Santoro F, Mayer D, Klement RM, Warczok KE, Stukalov A, Barlow DP, Pauler FM. Imprinted Igf2r silencing depends on continuous Airn lncRNA expression and is not restricted to a developmental window. Development 2013; 140:1184–95; PMID:23444351; http://dx.doi.org/10.1242/dev.088849
  • Andersson BS, Beran M, Pathak S, Goodacre A, Barlogie B, McCredie KB. Ph-positive chronic myeloid leukemia with near-haploid conversion in vivo and establishment of a continuously growing cell line with similar cytogenetic pattern. Cancer Genet Cytogenet 1987; 24:335–43; PMID:3466682; http://dx.doi.org/10.1016/0165-4608(87)90116-6
  • Schuster-Gossler K, Bilinski P, Sado T, Ferguson-Smith A, Gossler A. The mouse Gtl2 gene is differentially expressed during embryonic development, encodes multiple alternatively spliced transcripts, and may act as an RNA. Dev Dyn 1998; 212:214–28; PMID:9626496; http://dx.doi.org/10.1002/(SICI)1097-0177(199806)212:2%3c214::AID-AJA6%3e3.0.CO;2-K
  • Vlatkovic I. PhD thesis: Mapping and characterization of macro non-protein coding RNAs in human imprinted gene regions, University of Vienna; available for download at http://othes.univie.ac.at/12494/1/2010-09-01_0642621.pdf 2010
  • Smith RJ, Dean W, Konfortova G, Kelsey G. Identification of novel imprinted genes in a genome-wide screen for maternal methylation. Genome Res 2003; 13:558–69; PMID:12670997; http://dx.doi.org/10.1101/gr.781503
  • Andergassen D, Dotter CP, Kulinski TM, Guenzl PM, Bammer PC, Barlow DP, Pauler FM, Hudson QJ. Allelome.PRO, a pipeline to define allele-specific genomic features from high-throughput sequencing data. Nucleic Acids Res 2015; 43(21): e146; PMID:26202974
  • Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O, Farrell CM, Hart J, Landrum MJ, McGarvey KM, et al. RefSeq: an update on mammalian reference sequences. Nucleic Acids Res 2014; 42:D756–63; PMID:24259432; http://dx.doi.org/10.1093/nar/gkt1114
  • Mattick JS, Rinn JL. Discovery and annotation of long noncoding RNAs. Nat Struct Mol Biol 2015; 22:5–7; PMID:25565026; http://dx.doi.org/10.1038/nsmb.2942
  • Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, Zadissa A, Searle S, et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 2012; 22:1760–74; PMID:22955987; http://dx.doi.org/10.1101/gr.135350.111
  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013; 29:15–21; PMID:23104886; http://dx.doi.org/10.1093/bioinformatics/bts635
  • Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 2012; 22:1775–89; PMID:22955988; http://dx.doi.org/10.1101/gr.132159.111
  • Curinha A, Oliveira Braz S, Pereira-Castro I, Cruz A, Moreira A. Implications of polyadenylation in health and disease. Nucleus 2014; 5:508–19; PMID:25484187; http://dx.doi.org/10.4161/nucl.36360
  • Brockdorff N, Ashworth A, Kay GF, McCabe VM, Norris DP, Cooper PJ, Swift S, Rastan S. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 1992; 71:515–26; PMID:1423610; http://dx.doi.org/10.1016/0092-8674(92)90519-I
  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012; 7:562–78; PMID:22383036; http://dx.doi.org/10.1038/nprot.2012.016
  • Gregory TR. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol Rev Camb Philos Soc 2001; 76:65–101; PMID:11325054; http://dx.doi.org/10.1017/S1464793100005595
  • Huang R, Jaritz M, Guenzl P, Vlatkovic I, Sommer A, Tamir IM, Marks H, Klampfl T, Kralovics R, Stunnenberg HG, et al. An RNA-Seq strategy to detect the complete coding and non-coding transcriptome including full-length imprinted macro ncRNAs. PLoS One 2011; 6:e27288; PMID:22102886; http://dx.doi.org/10.1371/journal.pone.0027288
  • Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 2013; 31:46–53; PMID:23222703; http://dx.doi.org/10.1038/nbt.2450
  • Kowalczyk MS, Higgs DR, Gingeras TR. Molecular biology: RNA discrimination. Nature 2012; 482:310–1; PMID:22337043; http://dx.doi.org/10.1038/482310a
  • Wutz A. Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat Rev Genet 2011; 12:542–53; PMID:21765457; http://dx.doi.org/10.1038/nrg3035
  • Alen C, Kent NA, Jones HS, O'Sullivan J, Aranda A, Proudfoot NJ. A role for chromatin remodeling in transcriptional termination by RNA polymerase II. Mol Cell 2002; 10:1441–52; PMID:12504018; http://dx.doi.org/10.1016/S1097-2765(02)00778-5
  • Luco RF, Misteli T. More than a splicing code: integrating the role of RNA, chromatin and non-coding RNA in alternative splicing regulation. Curr Opin Genet Dev 2011; 21:366–72; PMID:21497503; http://dx.doi.org/10.1016/j.gde.2011.03.004
  • Weber EL, Cannon PM. Promoter choice for retroviral vectors: transcriptional strength vs. trans-activation potential. Hum Gene Ther 2007; 18:849–60; PMID:17767401; http://dx.doi.org/10.1089/hum.2007.067
  • Zwart R, Sleutels F, Wutz A, Schinkel AH, Barlow DP. Bidirectional action of the Igf2r imprint control element on upstream and downstream imprinted genes. Genes Dev 2001; 15:2361–6; PMID:11562346; http://dx.doi.org/10.1101/gad.206201
  • Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, Feil R, Fraser P. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 2008; 322:1717–20; PMID:18988810; http://dx.doi.org/10.1126/science.1163802
  • Babak T, DeVeale B, Tsang EK, Zhou Y, Li X, Smith KS, Kukurba KR, Zhang R, Li JB, van der Kooy D, et al. Genetic conflict reflected in tissue-specific maps of genomic imprinting in human and mouse. Nat Genet 2015; 47:544–9; PMID:25848752; http://dx.doi.org/10.1038/ng.3274
  • Baran Y, Subramaniam M, Biton A, Tukiainen T, Tsang EK, Rivas MA, Pirinen M, Gutierrez-Arcelus M, Smith KS, Kukurba KR, et al. The landscape of genomic imprinting across diverse adult human tissues. Genome Res 2015; 25:927–36; PMID:25953952; http://dx.doi.org/10.1101/gr.192278.115
  • Charrin S, Jouannet S, Boucheix C, Rubinstein E. Tetraspanins at a glance. J Cell Sci 2014; 127:3641–8; PMID:25128561; http://dx.doi.org/10.1242/jcs.154906
  • Karlsson G, Rorby E, Pina C, Soneji S, Reckzeh K, Miharada K, Karlsson C, Guo Y, Fugazza C, Gupta R, et al. The tetraspanin CD9 affords high-purity capture of all murine hematopoietic stem cells. Cell Rep 2013; 4:642–8; PMID:23954783; http://dx.doi.org/10.1016/j.celrep.2013.07.020
  • Carette JE, Pruszak J, Varadarajan M, Blomen VA, Gokhale S, Camargo FD, Wernig M, Jaenisch R, Brummelkamp TR. Generation of iPSCs from cultured human malignant cells. Blood 2010; 115:4039–42; PMID:20233975; http://dx.doi.org/10.1182/blood-2009-07-231845
  • Akutsu H, Miura T, Machida M, Birumachi J, Hamada A, Yamada M, Sullivan S, Miyado K, Umezawa A. Maintenance of pluripotency and self-renewal ability of mouse embryonic stem cells in the absence of tetraspanin CD9. Differentiation 2009; 78:137–42; PMID:19716222; http://dx.doi.org/10.1016/j.diff.2009.08.005
  • Kennaway DJ. Clock genes at the heart of depression. J Psychopharmacol 2010; 24:5–14; PMID:20663803; http://dx.doi.org/10.1177/1359786810372980
  • Baek SH, Kim KI. Emerging roles of orphan nuclear receptors in cancer. Annu Rev Physiol 2014; 76:177–95; PMID:24215441; http://dx.doi.org/10.1146/annurev-physiol-030212-183758
  • Wang A, Huang K, Shen Y, Xue Z, Cai C, Horvath S, Fan G. Functional modules distinguish human induced pluripotent stem cells from embryonic stem cells. Stem Cells Dev 2011; 20:1937–50; PMID:21542696; http://dx.doi.org/10.1089/scd.2010.0574
  • Carette JE, Guimaraes CP, Wuethrich I, Blomen VA, Varadarajan M, Sun C, Bell G, Yuan B, Muellner MK, Nijman SM, et al. Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nat Biotechnol 2011; 29:542–6; PMID:21623355; http://dx.doi.org/10.1038/nbt.1857
  • Sultan M, Dokel S, Amstislavskiy V, Wuttig D, Sultmann H, Lehrach H, Yaspo ML. A simple strand-specific RNA-Seq library preparation protocol combining the Illumina TruSeq RNA and the dUTP methods. Biochem Biophysical Res Commun 2012; 422:643–6; PMID:22609201; http://dx.doi.org/10.1016/j.bbrc.2012.05.043
  • Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002; 30:207-10; PMID:11752295; http://dx.doi.org/10.1093/nar/30.1.207
  • Forrest AR, Kawaji H, Rehli M, Baillie JK, de Hoon MJ, Haberle V, Lassmann T, Kulakovskiy IV, Lizio M, Itoh M, et al. A promoter-level mammalian expression atlas. Nature 2014; 507:462–70; PMID:24670764; http://dx.doi.org/10.1038/nature13182