5,300
Views
293
CrossRef citations to date
0
Altmetric
Review

Circular RNA participates in the carcinogenesis and the malignant behavior of cancer

&
Pages 514-521 | Received 20 May 2015, Accepted 16 Nov 2015, Published online: 03 Jun 2016

References

  • Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 2012; 7:e30733; PMID:22319583; http://dx.doi.org/10.1371/journal.pone.0030733
  • Wang KS, Choo QL, Weiner AJ, Ou JH, Najarian RC, Thayer RM, Mullenbach GT, Denniston KJ, Gerin JL, Houghton M. Structure, sequence and expression of the hepatitis delta (delta) viral genome. Nature 1986; 323:508–14; PMID:3762705; http://dx.doi.org/10.1038/323508a0
  • Wilusz JE, Sharp, PA. Molecular biology. A circuitous route to noncoding RNA. Science 2013; 340:440–1; PMID:23620042; http://dx.doi.org/10.1126/science.1238522
  • Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A 1976; 73:3852–6; PMID:1069269; http://dx.doi.org/10.1073/pnas.73.11.3852
  • Burgess DJ. RNA: Dissecting circular RNA biogenesis. Nat Rev Genet 2014; 15:707; PMID:25352302; http://dx.doi.org/10.1038/nrg3852
  • Vicens Q, Westhof E. Biogenesis of Circular RNAs. Cell 2014; 159:13–4; PMID:25259915; http://dx.doi.org/10.1016/j.cell.2014.09.005
  • Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495:333–8; PMID:23446348; http://dx.doi.org/10.1038/nature11928
  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature 2013; 495:384–8; PMID:23446346; http://dx.doi.org/10.1038/nature11993
  • Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ, Kjems J. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 2011; 30:4414–22; PMID:21964070; http://dx.doi.org/10.1038/emboj.2011.359
  • Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 2014; 15:7–21; PMID:24296535; http://dx.doi.org/10.1038/nrg3606
  • Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011; 12:861–74; PMID:22094949; http://dx.doi.org/10.1038/nrg3074
  • Suzuki H, Tsukahara T. A view of pre-mRNA splicing from RNase R resistant RNAs. Int J Mol Sci 2014; 15:9331–42; PMID:24865493; http://dx.doi.org/10.3390/ijms15069331
  • Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production. Genes Dev 2014; 28:2233–47; PMID:25281217; http://dx.doi.org/10.1101/gad.251926.114
  • Zhou H, Arcila ML, Li Z, Lee EJ, Henzler C, Liu J, Rana TM, Kosik KS. Deep annotation of mouse iso-miR and iso-moR variation. Nucleic Acids Res 2012; 40:5864–75; PMID:22434881; http://dx.doi.org/10.1093/nar/gks247
  • Zhang, X.-O., Wang HB, Zhang Y, Lu X, Chen LL, Yang L. Complementary Sequence-Mediated Exon Circularization. Cell 2014; 159:134–147; PMID:25242744; http://dx.doi.org/10.1016/j.cell.2014.09.001
  • Fu Y, Ramisetty SR, Hussain N, Baranger AM. MBNL1-RNA recognition: contributions of MBNL1 sequence and RNA conformation. Chembiochem 2012; 13:112–9; PMID:22106026; http://dx.doi.org/10.1002/cbic.201100487
  • Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S. circRNA Biogenesis Competes with Pre-mRNA Splicing. Mol Cell 2014; 56:55–66; PMID:25242144; http://dx.doi.org/10.1016/j.molcel.2014.08.019
  • Szmulewicz MN, Novick GE, Herrera RJ. Effects of Alu insertions on gene function. Electrophoresis 1998; 19:1260–4; PMID:9694261; http://dx.doi.org/10.1002/elps.1150190806
  • Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA, Goodall GJ. The RNA Binding Protein Quaking Regulates Formation of circRNAs. Cell 2015; 160:1125–34; PMID:25768908; http://dx.doi.org/10.1016/j.cell.2015.02.014
  • Garg M. Targeting microRNAs in epithelial-to-mesenchymal transition-induced cancer stem cells: therapeutic approaches in cancer. Expert Opin Ther Targets 2015; 19:285–97; PMID:25563894; http://dx.doi.org/10.1517/14728222.2014.975794
  • Ye X, Weinberg R A. Epithelial–Mesenchymal Plasticity: A Central Regulator of Cancer Progression. Trends Cell Biol 2015; PMID:26437589; http://dx.doi.org/10.1016/j.tcb.2015.07.012
  • Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L, Chen LL. Circular intronic long noncoding RNAs. Mol Cell 2013; 51:792–806; PMID:24035497; http://dx.doi.org/10.1016/j.molcel.2013.08.017
  • Umekage S, Kikuchi Y. In vivo circular RNA production using a constitutive promoter for high-level expression. J Biosci Bioeng 2009; 108:354–6; PMID:19716528; http://dx.doi.org/10.1016/j.jbiosc.2009.04.011
  • Guil S, Esteller M. RNA-RNA interactions in gene regulation: the coding and noncoding players. Trends Biochem Sci 2015; 40:248–56; PMID:25818326
  • Cheng DL, Xiang YY, Ji LJ, Lu XJ. Competing endogenous RNA interplay in cancer: mechanism, methodology, and perspectives. Tumour Biol 2015; 36:479–88; PMID:25604144; http://dx.doi.org/10.1007/s13277-015-3093-z
  • Satterlee JS, Basanta-Sanchez M, Blanco S, Li JB, Meyer K, Pollock J, Sadri-Vakili G, Rybak-Wolf A. Novel RNA modifications in the nervous system: form and function. J Neurosci 2014; 34:15170–7; PMID:25392485; http://dx.doi.org/10.1523/JNEUROSCI.3236-14.2014
  • Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Geneat 2007; 39:1033–7; PMID:17643101; http://dx.doi.org/10.1038/ng2079
  • Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 2007; 4:721–6; PMID:17694064; http://dx.doi.org/10.1038/nmeth1079
  • Talhouarne GJ, Gall JG. Lariat intronic RNAs in the cytoplasm of Xenopus tropicalis oocytes. RNA 2014; 20:1476–87; PMID:25051970; http://dx.doi.org/10.1261/rna.045781.114
  • Braunschweig U, Barbosa-Morais NL, Pan Q, Nachman EN, Alipanahi B, Gonatopoulos-Pournatzis T, Frey B, Irimia M, Blencowe BJ. Wide spread intron retention in mammals functionally tunes transcriptomes. Genome Res 2014; 24:1774–86; PMID:25258385; http://dx.doi.org/10.1101/gr.177790.114
  • Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, Davey NE, Humphreys DT, Preiss T, Steinmetz LM, et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 2012; 149:1393–406; PMID:22658674; http://dx.doi.org/10.1016/j.cell.2012.04.031
  • Hentze MW, Preiss T. Circular RNAs: splicing's enigma variations. EMBO J 2013; 32:923–5; PMID:23463100; http://dx.doi.org/10.1038/emboj.2013.53
  • Chen CY, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 1995; 268:415–7; PMID:7536344; http://dx.doi.org/10.1126/science.7536344
  • Lasda E, Parker R. Circular RNAs: diversity of form and function. RNA 2014; 20:1829–42; PMID:25404635; http://dx.doi.org/10.1261/rna.047126.114
  • Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol 2014; 32:453–61; PMID:24811520; http://dx.doi.org/10.1038/nbt.2890
  • Neveu P, Kye MJ, Qi S, Buchholz DE, Clegg DO, Sahin M, Park IH, Kim KS, Daley GQ, Kornblum HI, et al. MicroRNA profiling reveals two distinct p53-related human pluripotent stem cell states. Cell Stem Cell 2010; 7:671–81; PMID:21112562; http://dx.doi.org/10.1016/j.stem.2010.11.012
  • Li P, Chen S, Chen H, Mo X, Li T, Shao Y, Xiao B, Guo J. Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta 2015; 444:132–6; PMID:25689795; http://dx.doi.org/10.1016/j.cca.2015.02.018
  • Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, Aust S, Bachleitner-Hofmann T, Mesteri I, Grunt TW, Zeillinger R, Pils D. Correlation of circular RNA abundance with proliferation–exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. SciRep 2015; 5:8057; PMID:25624062; http://dx.doi.org/10.1038/srep08057
  • Rokavec M, Li H, Jiang L, Hermeking H. The p53/microRNA connection in gastrointestinal cancer. Clin Exp Gastroenterol 2014; 7:395–413; PMID:25328413
  • Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer. Cancer Res 2013; 73:5609–12; PMID:24014594; http://dx.doi.org/10.1158/0008-5472.CAN-13-1568
  • Wu HH, Lin WC, Tsai KW. Advances in molecular biomarkers for gastric cancer: miRNAs as emerging novel cancer markers. Expert Rev Mol Med 2014; 16, e1; PMID:24456939; http://dx.doi.org/10.1017/erm.2013.16
  • Chen YJ, Chien PH, Chen WS, Chien YF, Hsu YY, Wang LY, Chen JY, Lin CW, Huang TC, Yu YL, et al. Hepatitis B Virus-Encoded X Protein Downregulates EGFR Expression via Inducing MicroRNA-7 in Hepatocellular Carcinoma Cells. Evid Based Complement Alternat Med 2013; 2013:682380; PMID:23840262; http://dx.doi.org/10.1155/2013/682380
  • Zhou X, Hu Y, Dai L, Wang Y, Zhou J, Wang W, Di W, Qiu L. MicroRNA-7 inhibits tumor metastasis and reverses epithelial-mesenchymal transition through AKT/ERK1/2 inactivation by targeting EGFR in epithelial ovarian cancer. PLoS ONE 2014; 9, e96718; PMID:24816687; http://dx.doi.org/10.1371/journal.pone.0096718
  • Webster RJ, Giles KM, Price KJ, Zhang PM, Mattick JS, Leedman PJ. Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. J Biol Chem 2009; 284:5731–41; PMID:19073608; http://dx.doi.org/10.1074/jbc.M804280200
  • Fang Y, Xue JL, Shen Q, Chen J, Tian L. MicroRNA-7 inhibits tumor growth and metastasis by targeting the phosphoinositide 3-kinase/Akt pathway in hepatocellular carcinoma. Hepatology 2012; 55:1852–62; PMID:22234835; http://dx.doi.org/10.1002/hep.25576
  • Arteaga CL. The epidermal growth factor receptor: from mutant oncogene in nonhuman cancers to therapeutic target in human neoplasia. J. Clin. Oncol 2001; 19:32S–40S; PMID:11560969
  • Janbabai G, Oladi Z, Farazmandfar T, Taghvaei T, Naghshvar F. The prognostic impact of EGFR, ErbB2 and MET gene amplification in human gastric carcinomas as measured by quantitative Real-Time PCR. J Cancer Res Clin Oncol 2015; 141:1945–52; PMID:25820598; http://dx.doi.org/10.1007/s00432-015-1965-7
  • Zhao X, Dou W, He L, Liang S, Tie J, Liu C, Li T, Lu Y, Mo P, Shi Y, et al. MicroRNA-7 functions as an anti-metastatic microRNA in gastric cancer by targeting insulin-like growth factor-1 receptor. Oncogene 2013; 32:1363–72; PMID:22614005; http://dx.doi.org/10.1038/onc.2012.156
  • Zhang X, Hu S, Zhang X, Wang L, Zhang X, Yan B, Zhao J, Yang A, Zhang R. MicroRNA-7 arrests cell cycle in G1 phase by directly targeting CCNE1 in human hepatocellular carcinoma cells. Biochem Biophys Res Commun 2014; 443:1078–84; PMID:24370822; http://dx.doi.org/10.1016/j.bbrc.2013.12.095
  • Ma C, Qi Y, Shao L, Liu M, Li X, Tang H. Downregulation of miR-7 upregulates Cullin 5 (CUL5) to facilitate G1/S transition in human hepatocellular carcinoma cells. IUBMB Life 2013; 65:1026–34; PMID:24339204; http://dx.doi.org/10.1002/iub.1231
  • Chinnappan D, Xiao D, Ratnasari A, Andry C, King TC, Weber HC. Transcription factor YY1 expression in human gastrointestinal cancer cells. Int J Oncol 2009; 34:1417–23; PMID:19360355
  • Zhang N, Li X, Wu CW, Dong Y, Cai M, Mok MT, Wang H, Chen J, Ng SS, Chen M, Sung JJ, et al. microRNA-7 is a novel inhibitor of YY1 contributing to colorectal tumorigenesis. Oncogene 2013; 32:5078–88; PMID:23208495; http://dx.doi.org/10.1038/onc.2012.526
  • Suto T, Yokobori T, Yajima R, Morita H, Fujii T, Yamaguchi S, Altan B, Tsutsumi S, Asao T, Kuwano H. MicroRNA-7 expression in colorectal cancer is associated with poor prognosis and regulates cetuximab sensitivity via EGFR regulation. Carcinogenesis 2015; 36:338–45; PMID:25503932; http://dx.doi.org/10.1093/carcin/bgu242
  • Huynh FC, Jones FE. MicroRNA-7 inhibits multiple oncogenic pathways to suppress HER2Delta16 mediated breast tumorigenesis and reverse trastuzumab resistance. PLoS One 2014; 9, e114419; PMID:25532106; http://dx.doi.org/10.1371/journal.pone.0114419
  • Babae N, Bourajjaj M, Liu Y, Van Beijnum JR, Cerisoli F, Scaria PV, Verheul M, Van Berkel MP, Pieters EH, Van Haastert RJ, et al. Systemic miRNA-7 delivery inhibits tumor angiogenesis and growth in murine xenograft glioblastoma. Oncotarget 2014; 5:6687–700; PMID:25149532; http://dx.doi.org/10.18632/oncotarget.2235
  • Liu Z, Jiang Z, Huang J, Huang S, Li Y, Yu S, Yu S, Liu X. miR-7 inhibits glioblastoma growth by simultaneously interfering with the PI3K/ATK and Raf/MEK/ERK pathways. Int J Oncol 2014; 44:1571–80; PMID:24603851; http://dx.doi.org/10.3892/ijo.2014.2322.
  • Liu R, Liu X, Zheng Y, Gu J, Xiong S, Jiang P, Jiang X, Huang E, Yang Y, Ge D. MicroRNA-7 sensitizes non-small cell lung cancer cells to paclitaxel. Oncol Lett 2014; 8:2193–2200; PMID:25289099
  • Ma J, Fang B, Zeng F, Pang H, Zhang J, Shi Y, Wu X, Cheng L, Ma C, Xia J, et al. Curcumin inhibits cell growth and invasion through up-regulation of miR-7 in pancreatic cancer cells. Toxicol Lett 2014; 231:82–91; PMID:25256401; http://dx.doi.org/10.1016/j.toxlet.2014.09.014
  • Hao Z, Yang J, Wang C, Li Y, Zhang Y, Dong X, Zhou L, Liu J, Zhang Y, Qian J. MicroRNA-7 inhibits metastasis and invasion through targeting focal adhesion kinase in cervical cancer. Int J Clin Exp Med 2015; 8:480–7; PMID:25785020
  • Bak RO, Mikkelsen JG. miRNA sponges: soaking up miRNAs for regulation of gene expression. Wiley Interdiscip Rev RNA 2014; 5:317–33; PMID:24375960; http://dx.doi.org/10.1002/wrna.1213
  • Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-type specific features of circular RNA expression. PLoS Genet 2013; 9, e1003777; PMID:24039610; http://dx.doi.org/10.1371/annotation/f782282b-eefa-4c8d-985c-b1484e845855
  • Granados-Riveron JT, Aquino-Jarquin G. Does the linear Sry transcript function as a ceRNA for miR-138? The sense of antisense. F1000Res 2014; 3:90; PMID:25580223; http://dx.doi.org/10.12688/f1000research.3872.2
  • Guo JU, Agarwal V, Guo H, Bartel DP. Expanded identification and characterization of mammalian circular RNAs. Genome Biol 2014; 15:409; PMID:25070500; http://dx.doi.org/10.1186/s13059-014-0409-z
  • Wang Q, Tang H, Yin S, Dong C. Downregulation of microRNA-138 enhances the proliferation, migration and invasion of cholangiocarcinoma cells through the upregulation of RhoC/p-ERK/MMP-2/MMP-9. Oncol Rep 2013; 29:2046–52; PMID:23446431; http://dx.doi.org/10.3892/or.2013.2304
  • Long L, Huang G, Zhu H, Guo Y, Liu Y, Huo J. Down-regulation of miR-138 promotes colorectal cancer metastasis via directly targeting TWIST2. J Transl Med 2013; 11:275; PMID:24171926; http://dx.doi.org/10.1186/1479-5876-11-275
  • Ayaz L, Çayan F, Balci Ş, Görür A, Akbayir S, Yıldırım Yaroğlu H, Doğruer Unal N, Tamer L. Circulating microRNA expression profiles in ovarian cancer. J Obstet Gynaecol 2014; 34:620–4; PMID:24911418; http://dx.doi.org/10.3109/01443615.2014.919998
  • Chen P, Zeng M, Zhao Y, Fang X. Upregulation of Limk1 caused by microRNA-138 loss aggravates the metastasis of ovarian cancer by activation of Limk1/cofilin signaling. Oncol Rep 2014; 32:2070–6; PMID:25190487; http://dx.doi.org/10.3892/or.2014.3461
  • Yeh YM, Chuang CM, Chao KC, Wang LH. MicroRNA-138 suppresses ovarian cancer cell invasion and metastasis by targeting SOX4 and HIF-1alpha. Int J Cancer 2013; 133:867–78; PMID:23389731; http://dx.doi.org/10.1002/ijc.28086
  • Yang H, Tang Y, Guo W, Du Y, Wang Y, Li P, Zang W, Yin X, Wang H, Chu H, et al. Up-regulation of microRNA-138 induce radiosensitization in lung cancer cells. Tumour Biol 2014; 35:6557–65; PMID:24691972; http://dx.doi.org/10.1007/s13277-014-1879-z
  • Yang H, Luo J, Liu Z, Zhou R, Luo H. MicroRNA-138 Regulates DNA Damage Response in Small Cell Lung Cancer Cells by Directly Targeting H2AX. Cancer Invest 2015; 33:126–36; PMID:25699650; http://dx.doi.org/10.3109/07357907.2015
  • Berg V, Rusch M, Vartak N, Jüngst C, Schauss A, Waldmann H, Hedberg C, Pallasch CP, Bastiaens PI, Hallek M, et al. miRs-138 and −424 control palmitoylation-dependent CD95-mediated cell death by targeting acyl protein thioesterases 1 and 2 in chronic lymphocytic leukemia. Blood 2015; 125(19), 2948–2957; PMID:25670628; http://dx.doi.org/10.1182/blood-2014-07-586511
  • Kosik KS. Molecular biology: Circles reshape the RNA world. Nature 2013; 495:322–4; PMID:23446351; http://dx.doi.org/10.1038/nature11956
  • Lee KM, Choi EJ, Kim IA. microRNA-7 increases radiosensitivity of human cancer cells with activated EGFR-associated signaling. Radiother Oncol 2011; 101:171–6; PMID:21676478; http://dx.doi.org/10.1016/j.radonc.2011.05.050
  • Bockhorn J, Prat A, Chang Y F, Liu X, Huang S, Shang M, Nwachukwu C, Gomez-Vega MJ, Harrell JC, Olopade OI, et al. Differentiation and loss of malignant character of spontaneous pulmonary metastases in patient-derived breast cancer models. Cancer Res 2014; 74(24), 7406–7417; PMID:25339353; http://dx.doi.org/10.1158/0008-5472.CAN-14-1188
  • Tay FC, Lim JK, Zhu H, Hin LC, Wang S. Using artificial microRNA sponges to achieve microRNA loss-of-function in cancer cells. Adv Drug Deliv Rev 2014; PMID:24859534; http://dx.doi.org/10.1016/j.addr.2014.05.010
  • Santoro MM. Antiangiogenic cancer drug using the zebrafish model. Arterioscler Thromb Vasc Biol 2014; 34:1846–53; PMID:24903092; http://dx.doi.org/10.1161/ATVBAHA.114.303221
  • Mohseny AB, Hogendoorn PC. Zebrafish as a model for human osteosarcoma. Adv Exp Med Biol 2014; 804:221–36; PMID:24924177; http://dx.doi.org/10.1007/978-3-319-04843-7_12
  • Chao CW, Chan DC, Kuo A, Leder P. The mouse formin (Fmn) gene: abundant circular RNA transcripts and gene-targeted deletion analysis. Mol. Med 1998; 4:614–28; PMID:9848078

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.