2,855
Views
31
CrossRef citations to date
0
Altmetric
Review

The role of telomeres and telomerase reverse transcriptase isoforms in pluripotency induction and maintenance

, &
Pages 707-719 | Received 06 Jul 2015, Accepted 15 Dec 2015, Published online: 27 May 2016

References

  • Muller HJ. The Remaking of Chromosomes. Collecting Net - Woods Hole 1938; 13:181-98
  • McClintock B. The stability of broken ends of chromosomes in Zea mays. Genetics 1941; 26:234-82; PMID:17247004
  • Chan SR, Blackburn EH. Telomeres and telomerase. Philos Trans R Soc Lond B Biol Sci 2004; 359:109-21; PMID:15065663; http://dx.doi.org/10.1098/rstb.2003.1370
  • Hayflick L. The Limited in Vitro Lifetime of Human Diploid Cell Strains. Exp Cell Res 1965; 37:614-36; PMID:14315085; http://dx.doi.org/10.1016/0014-4827(65)90211-9
  • Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 1961; 25:585-621; PMID:13905658; http://dx.doi.org/10.1016/0014-4827(61)90192-6
  • Armanios M. Telomerase and idiopathic pulmonary fibrosis. Mutat Res 2012; 730:52-58; http://dx.doi.org/10.1016/j.mrfmmm.2011.10.013
  • Armanios MY, Chen JJ, Cogan JD, Alder JK, Ingersoll RG, Markin C, Lawson WE, Xie M, Vulto I, Phillips JA 3rd, et al. Telomerase Mutations in Families with Idiopathic Pulmonary Fibrosis. New England Journal of Medicine 2007; 356:1317-26; PMID:17392301; http://dx.doi.org/10.1056/NEJMoa066157
  • Aviv A. Genetics of leukocyte telomere length and its role in atherosclerosis. Mutat Res 2012; 730:68-74; http://dx.doi.org/10.1016/j.mrfmmm.2011.05.001
  • Yamaguchi H, Calado RT, Ly H, Kajigaya S, Baerlocher GM, Chanock SJ, Lansdorp PM, Young NS. Mutations in TERT, the Gene for Telomerase Reverse Transcriptase, in Aplastic Anemia. New England Journal of Medicine 2005; 352:1413-24; PMID:15814878; http://dx.doi.org/10.1056/NEJMoa042980
  • Carulli L, Anzivino C. Telomere and telomerase in chronic liver disease and hepatocarcinoma. World Journal of Gastroenterology : WJG 2014; 20:6287-92; PMID:24876749; http://dx.doi.org/10.3748/wjg.v20.i20.6287
  • Biron-Shental T, Sukenik-Halevy R, Sharon Y, Goldberg-Bittman L, Kidron D, Fejgin MD, Amiel A. Short telomeres may play a role in placental dysfunction in preeclampsia and intrauterine growth restriction. American journal of obstetrics and gynecology 2010; 202:381-e1; PMID:20350645; http://dx.doi.org/10.1016/j.ajog.2010.01.036
  • Biron-Shental T, Sukenik Halevy R, Goldberg-Bittman L, Kidron D, Fejgin MD, Amiel A. Telomeres are shorter in placental trophoblasts of pregnancies complicated with intrauterine growth restriction (IUGR). Early human development 2010; 86:451-6; PMID:20619976; http://dx.doi.org/10.1016/j.earlhumdev.2010.06.002
  • Biron-Shental T, Kidron D, Sukenik-Halevy R, Goldberg-Bittman L, Sharony R, Fejgin MD, Amiel A. TERC telomerase subunit gene copy number in placentas from pregnancies complicated with intrauterine growth restriction. Early human development 2011; 87:73-5; PMID:21168289; http://dx.doi.org/10.1016/j.earlhumdev.2010.08.024
  • Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 1985; 43:405-13; PMID:3907856; http://dx.doi.org/10.1016/0092-8674(85)90170-9
  • Blackburn EH, Collins K. Telomerase: an RNP enzyme synthesizes DNA. Cold Spring Harb Perspect Biol 2011; 3:a003558; PMID:20660025; http://dx.doi.org/10.1101/cshperspect.a003558
  • Artandi SE, DePinho RA. Telomeres and telomerase in cancer. Carcinogenesis 2010; 31:9-18; PMID:19887512; http://dx.doi.org/10.1093/carcin/bgp268
  • Autexier C, Greider CW. Telomerase and cancer: revisiting the telomere hypothesis. Trends Biochem Sci 1996; 21:387-91; PMID:8918193; http://dx.doi.org/10.1016/S0968-0004(96)10042-6
  • Xie X, Hiona A, Lee AS, Cao F, Huang M, Li Z, Cherry A, Pei X, Wu JC. Effects of long-term culture on human embryonic stem cell aging. Stem Cells Dev 2010; 20:127-38; PMID:20629482; http://dx.doi.org/10.1089/scd.2009.0475
  • Huang Y, Liang P, Liu D, Huang J, Songyang Z. Telomere regulation in pluripotent stem cells. Protein Cell 2014; 5:194-202; PMID:24563217; http://dx.doi.org/10.1007/s13238-014-0028-1
  • Kalmbach K, Robinson LG, Jr, Wang F, Liu L, Keefe D. Telomere length reprogramming in embryos and stem cells. Biomed Res Int 2014; 2014:925121; PMID:24719895; http://dx.doi.org/10.1155/2014/925121
  • Gourronc FA, Klingelhutz AJ. Therapeutic opportunities: Telomere maintenance in inducible pluripotent stem cells. Mutat Res 2012 730:98-105; PMID:21605571; http://dx.doi.org/10.1016/j.mrfmmm.2011.05.008
  • Huang J, Wang F, Okuka M, Liu N, Ji G, Ye X, Zuo B, Li M, Liang P, Ge WW, et al. Association of telomere length with authentic pluripotency of ES/iPS cells. Cell Res 2011; 21:779-92; PMID:21283131; http://dx.doi.org/10.1038/cr.2011.16
  • Keefe DL, Franco S, Liu L, Trimarchi J, Cao B, Weitzen S, Agarwal S, Blasco MA. Telomere length predicts embryo fragmentation after in vitro fertilization in women–toward a telomere theory of reproductive aging in women. Am J Obstet Gynecol 2005; 192:1256-60; discussion 1260–1; PMID:15846215; http://dx.doi.org/10.1016/j.ajog.2005.01.036
  • Listerman I, Sun J, Gazzaniga FS, Lukas JL, Blackburn EH. The major reverse transcriptase–incompetent splice variant of the human telomerase protein inhibits telomerase activity but protects from apoptosis. Cancer Res 2013; 73:2817-28; PMID:23610451; http://dx.doi.org/10.1158/0008-5472.CAN-12-3082
  • Hrdlickova R, Nehyba J, Bose HR, Jr. Alternatively spliced telomerase reverse transcriptase variants lacking telomerase activity stimulate cell proliferation. Mol Cell Biol 2012; 32:4283-96; PMID:22907755; http://dx.doi.org/10.1128/MCB.00550-12
  • Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW, Harley CB. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci U S A 1992; 89:10114-8; PMID:1438199; http://dx.doi.org/10.1073/pnas.89.21.10114
  • Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, Itskovitz-Eldor J, Thomson JA. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 2000; 227:271-278; PMID:11071754; http://dx.doi.org/10.1006/dbio.2000.9912
  • Vaziri H, Chapman KB, Guigova A, Teichroeb J, Lacher MD, Sternberg H, Singec I, Briggs L, Wheeler J, Sampathkumar J, et al. Spontaneous reversal of the developmental aging of normal human cells following transcriptional reprogramming. Regenerative Medicine 2010; 5:345-63; PMID:20230312; http://dx.doi.org/10.2217/rme.10.21
  • Winkler T, Hong SG, Decker JE, Morgan MJ, Wu C, Hughes WM 5th, Yang Y, Wangsa D, Padilla-Nash HM, Ried T, et al. Defective telomere elongation and hematopoiesis from telomerase-mutant aplastic anemia iPSCs. J Clin Investig 2013; 123:1952-63; http://dx.doi.org/10.1172/JCI67146
  • Suhr ST, Chang EA, Rodriguez RM, Wang K, Ross PJ, Beyhan Z, Murthy S, Cibelli JB. Telomere dynamics in human cells reprogrammed to pluripotency. PLoS ONE 2009; 4:e8124; PMID:19956585; http://dx.doi.org/10.1371/journal.pone.0008124
  • Ji G, Ruan W, Liu K, Wang F, Sakellariou D, Chen J, Yang Y, Okuka M, Han J, Liu Z, et al. Telomere reprogramming and maintenance in porcine iPS cells. PLoS ONE 2013; 8:e74202; PMID:24098638; http://dx.doi.org/10.1371/annotation/f5e4554b-18cc-46ef-ac39-73ac4d6750ae
  • Mathew R, Jia W, Sharma A, Zhao Y, Clarke LE, Cheng X, Wang H, Salli U, Vrana KE, Robertson GP, et al. Robust activation of the human but not mouse telomerase gene during the induction of pluripotency. FASEB J 2010; 24:2702-15; PMID:20354136; http://dx.doi.org/10.1096/fj.09-148973
  • Wang F, Yin Y, Ye X, Liu K, Zhu H, Wang L, Chiourea M, Okuka M, Ji G, Dan J, et al. Molecular insights into the heterogeneity of telomere reprogramming in induced pluripotent stem cells. Cell Res 2012; 22:757-68; PMID:22184006; http://dx.doi.org/10.1038/cr.2011.201
  • Yehezkel S, Rebibo-Sabbah A, Segev Y, Tzukerman M, Shaked R, Huber I, Gepstein L, Skorecki K, Selig S. Reprogramming of telomeric regions during the generation of human induced pluripotent stem cells and subsequent differentiation into fibroblast-like derivatives. Epigenetics 2011; 6:63-75; PMID:20861676; http://dx.doi.org/10.4161/epi.6.1.13390
  • Park KD, Seong SK, Park YM, Choi Y, Park JH, Lee SH, Baek DH, Kang JW, Choi KS, Park SN, et al. Telomerase reverse transcriptase related with telomerase activity regulates tumorigenic potential of mouse embryonic stem cells. Stem Cells Dev 2010; 20:149-57; PMID:20486780; http://dx.doi.org/10.1089/scd.2009.0523
  • Holt SE, Wright WE, Shay JW. Regulation of telomerase activity in immortal cell lines. Mol Cell Biol 1996; 16:2932-9; PMID:8649404; http://dx.doi.org/10.1128/MCB.16.6.2932
  • Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW. Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 1996; 18:173-9; PMID:8934879; http://dx.doi.org/10.1002/(SICI)1520-6408(1996)18:2%3c173::AID-DVG10%3e3.0.CO;2-3
  • Zhao Y, Sfeir AJ, Zou Y, Buseman CM, Chow TT, Shay JW, Wright WE. Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells. Cell 2009; 138:463-75; PMID:19665970; http://dx.doi.org/10.1016/j.cell.2009.05.026
  • Lapasset L, Milhavet O, Prieur A, Besnard E, Babled A, Aït-Hamou N, Leschik J, Pellestor F, Ramirez JM, De Vos J, et al. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Gen Dev 2011; 25:2248-53; PMID:22056670; http://dx.doi.org/10.1101/gad.173922.111
  • Agarwal S, Loh YH, McLoughlin EM, Huang J, Park IH, Miller JD, Huo H, Okuka M, Dos Reis RM, Loewer S, et al. Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature 2010; 464:292-6; PMID:20164838; http://dx.doi.org/10.1038/nature08792
  • Hemann MT, Strong MA, Hao L.-Y, Greider CW. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107:67-77; PMID:11595186; http://dx.doi.org/10.1016/S0092-8674(01)00504-9
  • Batista LFZ, Pech MF, Zhong FL, Nguyen HN, Xie KT, Zaug AJ, Crary SM, Choi J, Sebastiano V, Cherry A, et al. Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells. Nature 2011; 474:399-402; PMID:21602826; http://dx.doi.org/10.1038/nature10084
  • Huang J, Wang F, Okuka M, Liu N, Ji G, Ye X, Zuo B, Li M, Liang P, Ge WW, et al. Association of telomere length with authentic pluripotency of ES/iPS cells. Cell Res 2011; 21:779-92; PMID:21283131; http://dx.doi.org/10.1038/cr.2011.16
  • Le R, Kou Z, Jiang Y, Li M, Huang B, Liu W, Li H, Kou X, He W, Rudolph KL, et al. Enhanced telomere rejuvenation in pluripotent cells reprogrammed via nuclear transfer relative to induced pluripotent stem cells. Cell Stem Cell 2014; 14:27-39; PMID:24268696; http://dx.doi.org/10.1016/j.stem.2013.11.005
  • Pucci F, Gardano L, Harrington L. Short Telomeres in ESCs Lead to Unstable Differentiation. Cell Stem Cell 2013; 12:479-86; PMID:23561444; http://dx.doi.org/10.1016/j.stem.2013.01.018
  • Dang-Nguyen TQ, Haraguchi S, Furusawa T, Somfai T, Kaneda M, Watanabe S, Akagi S, Kikuchi K, Tajima A, Nagai T. Downregulation of histone methyltransferase genes SUV39H1 and SUV39H2 increases telomere length in embryonic stem-like cells and embryonic fibroblasts in pigs. J Reprod Dev 2013; 59:27-32; PMID:23018532
  • De Bonis ML, Ortega S, Blasco MA. SIRT1 is necessary for proficient telomere elongation and genomic stability of induced pluripotent stem cells. Stem cell reports 2014; 2:690-706; PMID:24936455; http://dx.doi.org/10.1016/j.stemcr.2014.03.002
  • Tsai C-C, Chen CL, Liu HC, Lee YT, Wang HW, Hou LT, Hung SC. Overexpression of hTERT increases stem-like properties and decreases spontaneous differentiation in human mesenchymal stem cell lines. J Biomed Sci 2010; 17:10-1186; PMID:20152059; http://dx.doi.org/10.1186/1423-0127-17-10
  • Zeng S, Liu L, Sun Y, Xie P, Hu L, Yuan D, Chen D, Ouyang Q, Lin G, Lu G. Telomerase-mediated telomere elongation from human blastocysts to embryonic stem cells. J Cell Sci 2014; 127:752-62; PMID:24338368; http://dx.doi.org/10.1242/jcs.131433
  • Liu L, Bailey SM, Okuka M, Muñoz P, Li C, Zhou L, Wu C, Czerwiec E, Sandler L, Seyfang A, et al. Telomere lengthening early in development. Nat Cell Biol 2007; 9:1436-41; PMID:17982445; http://dx.doi.org/10.1038/ncb1664
  • Zalzman M, Falco G, Sharova LV, Nishiyama A, Thomas M, Lee SL, Stagg CA, Hoang HG, Yang HT, Indig FE, et al. Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature 2010; 464:858-63; PMID:20336070; http://dx.doi.org/10.1038/nature08882
  • Varela E, Schneider RP, Ortega S, Blasco MA. Different telomere-length dynamics at the inner cell mass versus established embryonic stem (ES) cells. Proc Natl Acad Sci 2011; 108(37):15207-12; PMID: 21873233
  • Marion RM, Strati K, Li H, Tejera A, Schoeftner S, Ortega S, Serrano M, Blasco MA. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell 2009; 4:141-54; PMID:19200803; http://dx.doi.org/10.1016/j.stem.2008.12.010
  • Jiang J, Lv W, Ye X, Wang L, Zhang M, Yang H, Okuka M, Zhou C, Zhang X, Liu L, et al. Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation. Cell research 2013; 23:92-106; PMID:23147797; http://dx.doi.org/10.1038/cr.2012.157
  • Lee K, Gollahon, L. Abstract 2047: The interaction of ZSCAN4 with TRF1: Effects on regulation of telomere elongation in cancer cells. Cancer research 2012; 72:2047; PMID:26403970; http://dx.doi.org/10.1158/1538-7445.AM2012-2047
  • Dan J, Liu Y, Liu N, Chiourea M, Okuka M, Wu T, Ye X, Mou C, Wang L, Wang L, et al. Rif1 maintains telomere length homeostasis of ESCs by mediating heterochromatin silencing. Developmental cell 2014; 29:7-19; PMID:24735877; http://dx.doi.org/10.1016/j.devcel.2014.03.004
  • Schneider RP, Garrobo I, Foronda M, Palacios JA, Marión RM, Flores I, Ortega S, Blasco MA. TRF1 is a stem cell marker and is essential for the generation of induced pluripotent stem cells. Nature communications 2013; 4:1946; PMID: 23735977
  • Ozturk S, Sozen B, Demir N. Telomere length and telomerase activity during oocyte maturation and early embryo development in mammalian species. Molecular human reproduction 2014; 20:15-30; PMID:23928157; http://dx.doi.org/10.1093/molehr/gat055
  • Blasco MA. Telomere length, stem cells and aging. Nature chemical biology 2007; 3:640-649; PMID:17876321; http://dx.doi.org/10.1038/nchembio.2007.38
  • Wong LH, Ren H, Williams E, McGhie J, Ahn S, Sim M, Tam A, Earle E, Anderson MA, Mann J, et al. Histone H3. 3 incorporation provides a unique and functionally essential telomeric chromatin in embryonic stem cells. Genome research 2009; 19:404-14; PMID:19196724; http://dx.doi.org/10.1101/gr.084947.108
  • Zhou Y, Zhou P, Xin Y, Wang J, Zhu Z, Hu J, Wei S, Ma H. Trend of telomerase activity change during human iPSC self-renewal and differentiation revealed by a quartz crystal microbalance based assay. Sci Rep 2014; 4:6978; PMID:25381797; http://dx.doi.org/10.1038/srep06978
  • Dashinimaev EB, et al. Induction of telomerase activity increase reprogramming efficiency of human dermal fibroblasts. Moscow University Biological Sciences Bulletin 2012; 67:6-12; http://dx.doi.org/10.3103/S0096392512010038
  • Kinoshita T, Nagamatsu G, Saito S, Takubo K, Horimoto K, Suda T. Telomerase Reverse Transcriptase Has an Extratelomeric Function in Somatic Cell Reprogramming. Journal of Biological Chemistry 2014; 289:15776-87; PMID:24733392; http://dx.doi.org/10.1074/jbc.M113.536037
  • Stadtfeld M, Maherali N, Breault DT, Hochedlinger K. Defining Molecular Cornerstones during Fibroblast to iPS Cell Reprogramming in Mouse. Cell Stem Cell 2008;2:230-40; PMID:18371448; http://dx.doi.org/10.1016/j.stem.2008.02.001
  • Hoffmeyer K, Raggioli A, Rudloff S, Anton R, Hierholzer A, Del Valle I, Hein K, Vogt R, Kemler R. Wnt/β-Catenin Signaling Regulates Telomerase in Stem Cells and Cancer Cells. Science 2012; 336:1549-54; PMID:22723415; http://dx.doi.org/10.1126/science.1218370
  • Wong C-W, Hou PS, Tseng SF, Chien CL, Wu KJ, Chen HF, Ho HN, Kyo S, Teng SC. Krüppel-Like Transcription Factor 4 Contributes to Maintenance of Telomerase Activity in Stem Cells. Stem Cells 2010; 28:1510-17; PMID:20629177; http://dx.doi.org/10.1002/stem.477
  • Zhang Y, Toh L, Lau P, Wang X. Human telomerase reverse transcriptase (hTERT) is a novel target of the Wnt/β-catenin pathway in human cancer. Journal of Biological Chemistry 2012; 287:32494-511; PMID:22854964; http://dx.doi.org/10.1074/jbc.M112.368282
  • Marion RM, Strati K, Li H, Murga M, Blanco R, Ortega S, Fernandez-Capetillo O, Serrano M, Blasco MA. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 2009; 460:1149-53; PMID:19668189; http://dx.doi.org/10.1038/nature08287
  • Rowland BD, Bernards R, Peeper DS. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol 2005; 7:1074-82; PMID:16244670; http://dx.doi.org/10.1038/ncb1314
  • Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 126:663-76; PMID:16904174; http://dx.doi.org/10.1016/j.cell.2006.07.024
  • Wernig M, Meissner A, Cassady JP, Jaenisch R. c-Myc Is Dispensable for Direct Reprogramming of Mouse Fibroblasts. Cell Stem Cell 2:10-12; PMID:18371415; http://dx.doi.org/10.1016/j.stem.2007.12.001
  • Wu K-J, Grandori C, Amacker M, Simon-Vermot N, Polack A, Lingner J, Dalla-Favera R. Direct activation of TERT transcription by c-MYC. Nat Genet 1999; 21:220-4; PMID:9988278; http://dx.doi.org/10.1038/6010
  • Wang J, Xie LY, Allan S, Beach D, Hannon GJ. Myc activates telomerase. Gen Dev 1998; 12:1769-74; PMID:9637678; http://dx.doi.org/10.1101/gad.12.12.1769
  • Bourillot PY, Aksoy I, Schreiber V, Wianny F, Schulz H, Hummel O, Hubner N, Savatier P. Novel STAT3 target genes exert distinct roles in the inhibition of mesoderm and endoderm differentiation in cooperation with Nanog. Stem Cells 2009; 27:1760-71; PMID:19544440; http://dx.doi.org/10.1002/stem.110
  • Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS. MicroRNA-145 Regulates OCT4, SOX2, and KLF4 and Represses Pluripotency in Human Embryonic Stem Cells. Cell 137:647-58; PMID:19409607; http://dx.doi.org/10.1016/j.cell.2009.02.038
  • Erdmann N, Liu Y, Harrington L. Distinct dosage requirements for the maintenance of long and short telomeres in mTert heterozygous mice. Proc Natl Acad Sci of the United States of America 2004; 101:6080-5; PMID:15079066; http://dx.doi.org/10.1073/pnas.0401580101
  • Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 1997; 91:25-34; PMID:9335332; http://dx.doi.org/10.1016/S0092-8674(01)80006-4
  • Sung L-Y, Chang WF, Zhang Q, Liu CC, Liou JY, Chang CC, Ou-Yang H, Guo R, Fu H, Cheng WT, et al. Telomere Elongation and Naive Pluripotent Stem Cells Achieved from Telomerase Haplo-Insufficient Cells by Somatic Cell Nuclear Transfer. Cell reports 2014; 9:1603-9; PMID:25464850; http://dx.doi.org/10.1016/j.celrep.2014.10.052
  • Feng B, Jiang J, Kraus P, Ng JH, Heng JC, Chan YS, Yaw LP, Zhang W, Loh YH, Han J, et al. Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat Cell Biol 2009; 11:197-203; PMID:19136965; http://dx.doi.org/10.1038/ncb1827
  • Festuccia N, Osorno R, Halbritter F, Karwacki-Neisius V, Navarro P, Colby D, Wong F, Yates A, Tomlinson SR, Chambers I. Esrrb is a direct nanog target gene that can substitute for nanog function in pluripotent cells. Cell Stem Cell 2012; 11:477-90; PMID:23040477; http://dx.doi.org/10.1016/j.stem.2012.08.002
  • Li M, He Y, Dubois W, Wu X, Shi J, Huang J. Distinct Regulatory Mechanisms and Functions for p53-Activated and p53-Repressed DNA Damage Response Genes in Embryonic Stem Cells. Molecular Cell 2012; 46:30-42; PMID:22387025; http://dx.doi.org/10.1016/j.molcel.2012.01.020
  • Li L, Wang S, Jezierski A, Moalim-Nour L, Mohib K, Parks RJ, Retta SF, Wang L. A unique interplay between Rap1 and E-cadherin in the endocytic pathway regulates self-renewal of human embryonic stem cells. Stem Cells 2010; 28:247-57; PMID:20039365; http://dx.doi.org/10.1002/stem.532
  • Fong YW, Ho JJ, Inouye C, Tjian R. The dyskerin ribonucleoprotein complex as an OCT4/SOX2 coactivator in embryonic stem cells (ed. Blencowe, BJ.) Elife 3; e03573 (2014); PMID:25407680
  • Yang C, Przyborski S, Cooke MJ, Zhang X, Stewart R, Anyfantis G, Atkinson SP, Saretzki G, Armstrong L, et al. A key role for telomerase reverse transcriptase unit in modulating human embryonic stem cell proliferation, cell cycle dynamics, and in vitro differentiation. Stem Cells 2008; 26:850-63; PMID:18203676; http://dx.doi.org/10.1634/stemcells.2007-0677
  • Radan L, Hughes CS, Teichroeb JH, Vieira Zamora FM, Jewer M, Postovit LM, Betts DH. Microenvironmental regulation of telomerase isoforms in human embryonic stem cells. Stem Cells Dev 2014; 23:2046-66; PMID:24749509; http://dx.doi.org/10.1089/scd.2013.0373
  • Sexton AN, Regalado SG, Lai CS, Cost GJ, O'Neil CM, Urnov FD, Gregory PD, Jaenisch R, Collins K, Hockemeyer D. Genetic and molecular identification of three human TPP1 functions in telomerase action: recruitment, activation, and homeostasis set point regulation. Gen Dev 2014; 28:1885-99; PMID:25128433; http://dx.doi.org/10.1101/gad.246819.114
  • Choi J, Southworth LK, Sarin KY, Venteicher AS, Ma W, Chang W, Cheung P, Jun S, Artandi MK, Shah N, et al. TERT Promotes Epithelial Proliferation through Transcriptional Control of a Myc- and Wnt-Related Developmental Program. PLoS Genet 2008; 4:e10; PMID:18208333; http://dx.doi.org/10.1371/journal.pgen.0040010
  • Cong Y, Shay JW. Actions of human telomerase beyond telomeres. Cell Res 2008; 18:725-32; PMID:18574498; http://dx.doi.org/10.1038/cr.2008.74
  • Gu B-W, Bessler M, Mason PJ. A pathogenic dyskerin mutation impairs proliferation and activates a DNA damage response independent of telomere length in mice. Proc Natl Acad Sci 2008; 105:10173-8; PMID:18626023; http://dx.doi.org/10.1073/pnas.0803559105
  • Sarin KY. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature 2005; 436:1048-52; PMID:16107853; http://dx.doi.org/10.1038/nature03836
  • Stewart SA, Hahn WC, O'Connor BF, Banner EN, Lundberg AS, Modha P, Mizuno H, Brooks MW, Fleming M, Zimonjic DB, et al. Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. Proc Natl Acad Sci 2002; 99:12606-11; PMID:12193655; http://dx.doi.org/10.1073/pnas.182407599
  • Smith LL, Coller HA, Roberts JM. Telomerase modulates expression of growth-controlling genes and enhances cell proliferation. Nat Cell Biol 2003; 5:474-9; PMID:12717449; http://dx.doi.org/10.1038/ncb985
  • Flores I, Cayuela ML, Blasco MA. Effects of Telomerase and Telomere Length on Epidermal Stem Cell Behavior. Science 2005; 309:1253-6; PMID:16037417; http://dx.doi.org/10.1126/science.1115025
  • Martínez P, Blasco MA. Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer 2011; 11:161-76; PMID:21346783; http://dx.doi.org/10.1038/nrc3025
  • Blasco MA. Telomerase beyond telomeres. Nat Rev Cancer 2002; 2:627-33; PMID:12154355; http://dx.doi.org/10.1038/nrc862
  • Singhapol C, Pal D, Czapiewski R, Porika M, Nelson G, Saretzki GC. Mitochondrial telomerase protects cancer cells from nuclear DNA damage and apoptosis. PLoS ONE 2013; 8:9; PMID:23326372; http://dx.doi.org/10.1371/journal.pone.0052989
  • Indran IR, Hande MP, Pervaiz S. hTERT Overexpression Alleviates Intracellular ROS Production, Improves Mitochondrial Function, and Inhibits ROS-Mediated Apoptosis in Cancer Cells. Cancer Res 2011; 71:266-76; PMID:21071633; http://dx.doi.org/10.1158/0008-5472.CAN-10-1588
  • Nitta E, Yamashita M, Hosokawa K, Xian M, Takubo K, Arai F, Nakada S, Suda T. Telomerase reverse transcriptase protects ATM-deficient hematopoietic stem cells from ROS-induced apoptosis through a telomere-independent mechanism 2011.
  • Liu Z, Wan P, Duan H, Zhou J, Tan B, Liu Y, Zhou Q, Zhou C, Huang Z, Tian B, et al. ES micro-environment enhances stemness and inhibits apoptosis in human limbal stem cells via the maintenance of telomerase activity. PLoS ONE 2013; 8:e53576; PMID:23326460; http://dx.doi.org/10.1371/journal.pone.0053576
  • Mattiussi M, Tilman G, Lenglez S, Decottignies A. Human telomerase represses ROS-dependent cellular responses to Tumor Necrosis Factor-α without affecting NF-κB activation. Cellular Signalling 2012; 24:708-17; PMID:22108091; http://dx.doi.org/10.1016/j.cellsig.2011.11.004
  • Kong F, Zheng C, Xu D. Telomerase as a “stemness” enzyme. Science China Life Sciences 2014; 57:564-70; PMID:24829107; http://dx.doi.org/10.1007/s11427-014-4666-6
  • Maida Y, Yasukawa M, Furuuchi M, Lassmann T, Possemato R, Okamoto N, Kasim V, Hayashizaki Y, Hahn WC, Masutomi K. An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA. Nature 2009; 461:230-5; PMID:19701182; http://dx.doi.org/10.1038/nature08283
  • Sharma NK, Reyes A, Green P, Caron MJ, Bonini MG, Gordon DM, Holt IJ, Santos JH. Human telomerase acts as a hTR-independent reverse transcriptase in mitochondria. Nucleic Acids Res 2011. 40:712-25; PMID: 21937513
  • Okamoto N, Yasukawa M, Nguyen C, Kasim V, Maida Y, Possemato R, Shibata T, Ligon KL, Fukami K, Hahn WC, et al. Maintenance of tumor initiating cells of defined genetic composition by nucleostemin. Proc Natl Acad Sci U S A 2011; 108:20388-93; PMID:21730156; http://dx.doi.org/10.1073/pnas.1015171108
  • Park JI, Venteicher AS, Hong JY, Choi J, Jun S, Shkreli M, Chang W, Meng Z, Cheung P, Ji H, et al. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 2009; 460:66-72; PMID:19571879; http://dx.doi.org/10.1038/nature08137
  • Ghosh A, Saginc G, Leow SC, Khattar E, Shin EM, Yan TD, Wong M, Zhang Z, Li G, Sung WK, et al. Telomerase directly regulates NF-κB-dependent transcription. Nat Cell Biol 2012; 14:1270-1281; PMID:23159929; http://dx.doi.org/10.1038/ncb2621
  • Maida Y, Yasukawa M, Okamoto N, Ohka S, Kinoshita K, Totoki Y, Ito TK, Minamino T, Nakamura H, Yamaguchi S, et al. Involvement of telomerase reverse transcriptase in heterochromatin maintenance. Mol Cell Biol 2014; 34:1576-93; PMID:24550003; http://dx.doi.org/10.1128/MCB.00093-14
  • Lassmann T, Maida Y, Tomaru Y, Yasukawa M, Ando Y, Kojima M, Kasim V, Simon C, Daub CO, Carninci P, et al. Telomerase Reverse Transcriptase Regulates microRNAs. Int J Mol Sci 2015; 16:1192-208; PMID:25569094; http://dx.doi.org/10.3390/ijms16011192
  • Hang CT, Yang J, Han P, Cheng HL, Shang C, Ashley E, Zhou B, Chang CP. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 2010; 466:62-67; PMID:20596014; http://dx.doi.org/10.1038/nature09130
  • Griffin CT, Brennan J, Magnuson T. The chromatin-remodeling enzyme BRG1 plays an essential role in primitive erythropoiesis and vascular development. Development 2008; 135:493-500; PMID:18094026; http://dx.doi.org/10.1242/dev.010090
  • Seo S, Richardson GA, Kroll KL. The SWI/SNF chromatin remodeling protein Brg1 is required for vertebrate neurogenesis and mediates transactivation of Ngn and NeuroD. Development 2005; 132:105-15; PMID:15576411; http://dx.doi.org/10.1242/dev.01548
  • Bultman S, Gebuhr T, Yee D, La Mantia C, Nicholson J, Gilliam A, Randazzo F, Metzger D, Chambon P, Crabtree G, et al. A Brg1 Null Mutation in the Mouse Reveals Functional Differences among Mammalian SWI/SNF Complexes. Mol Cell 2000; 6:1287-95; PMID:11163203; http://dx.doi.org/10.1016/S1097-2765(00)00127-1
  • Bultman SJ, Gebuhr TC, Pan H, Svoboda P, Schultz RM, Magnuson T. Maternal BRG1 regulates zygotic genome activation in the mouse. Gen Dev 2006; 20:1744-54; PMID:16818606; http://dx.doi.org/10.1101/gad.1435106
  • Listerman I, Gazzaniga FS, Blackburn EH. An investigation of the effects of the core protein telomerase reverse transcriptase on wnt signaling in breast Cancer cells. Mol Cell Biol 2014; 34:280-9; PMID:24216762; http://dx.doi.org/10.1128/MCB.00844-13
  • Liu Z, Li Q, Li K, Chen L, Li W, Hou M, Liu T, Yang J, Lindvall C, Björkholm M, et al. Telomerase reverse transcriptase promotes epithelial–mesenchymal transition and stem cell-like traits in cancer cells. Oncogene 2013; 32:4203-13; PMID:23045275; http://dx.doi.org/10.1038/onc.2012.441
  • Orsulic S, Huber O, Aberle H, Arnold S, Kemler R. E-cadherin binding prevents beta-catenin nuclear localization and beta-catenin/LEF-1-mediated transactivation. J Cell Sci 1999; 112 (Pt 8), 1237-45; PMID:10085258
  • Liu X, Sun H, Qi J, Wang L, He S, Liu J, Feng C, Chen C, Li W, Guo Y, et al. Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT–MET mechanism for optimal reprogramming. Nat Cell Biol 2013; 15:829-38; PMID:23708003; http://dx.doi.org/10.1038/ncb2765
  • Moslehi J, DePinho RA, Sahin E. Telomeres and Mitochondria in the Aging Heart. Circulation Res 2012; 110:1226-37; PMID:22539756; http://dx.doi.org/10.1161/CIRCRESAHA.111.246868
  • Saretzki G. Extra-telomeric functions of human telomerase: cancer, mitochondria and oxidative stress. Curr Pharmaceutical Design 2014; 20:6386-403; PMID:24975608; http://dx.doi.org/10.2174/1381612820666140630095606
  • Chang DD, Clayton DA. A novel endoribonuclease cleaves at a priming site of mouse mitochondrial DNA replication. The EMBO Journal 1987; 6:409-17; PMID:3582365
  • Rosenbluh J, Nijhawan D, Chen Z, Wong KK, Masutomi K, Hahn WC. RMRP Is a Non-Coding RNA Essential for Early Murine Development. PLoS ONE 2011; 6:e26270; PMID:22039455; http://dx.doi.org/10.1371/journal.pone.0026270
  • Maida Y, Kyo S, Lassmann T, Hayashizaki Y, Masutomi K. Off-Target Effect of Endogenous siRNA Derived from RMRP in Human Cells. Int J Mol Sci 2013; 14:9305-18; PMID:23629666; http://dx.doi.org/10.3390/ijms14059305
  • Drevytska TI, Nagibin VS, Gurianova VL, Kedlyan VR, Moibenko AA, Dosenko VE. Silencing of TERT decreases levels of miR-1, miR-21, miR-29a and miR-208a in cardiomyocytes. Cell Biochem Funct 2014; 32:565-70; PMID:25156787; http://dx.doi.org/10.1002/cbf.3051
  • Strong MA, Vidal-Cardenas SL, Karim B, Yu H, Guo N, Greider CW. Phenotypes in mTERT(+)/(−) and mTERT(−)/(−) mice are due to short telomeres, not telomere-independent functions of telomerase reverse transcriptase. Mol Cell Biol 2011; 31:2369-79; PMID:21464209; http://dx.doi.org/10.1128/MCB.05312-11
  • Yi X, Shay JW, Wright WE. Quantitation of telomerase components and hTERT mRNA splicing patterns in immortal human cells. Nucleic Acids Res 2001; 29:4818-25; PMID:11726691; http://dx.doi.org/10.1093/nar/29.23.4818
  • Ulaner GA, Giudice LC. Developmental regulation of telomerase activity in human fetal tissues during gestation. Mol Hum Reprod 1997; 3:769-73; PMID:9358002; http://dx.doi.org/10.1093/molehr/3.9.769
  • Ulaner GA, Hu JF, Vu TH, Giudice LC, Hoffman AR. Telomerase activity in human development is regulated by human telomerase reverse transcriptase (hTERT) transcription and by alternate splicing of hTERT transcripts. Cancer Res 1998; 58:4168-72; PMID:9751630
  • Ulaner GA, Hu J.-F, Vu TH, Giudice LC, Hoffman AR. Tissue-specific alternate splicing of human telomerase reverse transcriptase (hTERT) influences telomere lengths during human development. Int J Cancer 2001; 91:644-9; PMID:11267974; http://dx.doi.org/10.1002/1097-0215(200002)9999:9999%3c::AID-IJC1103%3e3.0.CO;2-V
  • Yokoyama Y, Wan X, Takahashi Y, Shinohara A, Tamaya T. Alternatively spliced variant deleting exons 7 and 8 of the human telomerase reverse transcriptase gene is dominantly expressed in the uterus. Mol Hum Reprod 2001; 7:853-7; PMID:11517292; http://dx.doi.org/10.1093/molehr/7.9.853
  • Graveley BR. Alternative splicing: increasing diversity in the proteomic world. Trends Genet 2001; 17:100-7; PMID:11173120; http://dx.doi.org/10.1016/S0168-9525(00)02176-4
  • Kilian A, Bowtell DD, Abud HE, Hime GR, Venter DJ, Keese PK, Duncan EL, Reddel RR, Jefferson RA. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types. Hum Mol Genet 1997; 6:2011-9; PMID:9328464; http://dx.doi.org/10.1093/hmg/6.12.2011
  • Hisatomi H, Ohyashiki K, Ohyashiki JH, Nagao K, Kanamaru T, Hirata H, Hibi N, Tsukada Y. Expression profile of a gamma-deletion variant of the human telomerase reverse transcriptase gene. Neoplasia 2003; 5:193-7; PMID:12869302; http://dx.doi.org/10.1016/S1476-5586(03)80051-9
  • Sæbøe-Larssen S, Fossberg E, Gaudernack G. Characterization of novel alternative splicing sites in human telomerase reverse transcriptase (hTERT): analysis of expression and mutual correlation in mRNA isoforms from normal and tumour tissues. BMC Mol Biol 2006; 7:26; PMID: 16939641
  • Withers JB, Ashvetiya T, Beemon KL. Exclusion of exon 2 is a common mRNA splice variant of primate telomerase reverse transcriptases. PLoS One 2012; 7:e48016; PMID:23110161; http://dx.doi.org/10.1371/journal.pone.0048016
  • Wick M, Zubov D, Hagen G. Genomic organization and promoter characterization of the gene encoding the human telomerase reverse transcriptase (hTERT). Gene 1999; 232:97-106; PMID:10333526; http://dx.doi.org/10.1016/S0378-1119(99)00108-0
  • Wong Mandy S, Chen L, Foster C, Kainthla R, Shay JW, Wright WE. Regulation of Telomerase Alternative Splicing: A Target for Chemotherapy. Cell Rep 2013; 3:1028-35; PMID:23562158; http://dx.doi.org/10.1016/j.celrep.2013.03.011
  • Yi X, White DM, Aisner DL, Baur JA, Wright WE, Shay JW. An alternate splicing variant of the human telomerase catalytic subunit inhibits telomerase activity. Neoplasia 2000; 2:433-40; PMID:11191110; http://dx.doi.org/10.1038/sj.neo.7900113
  • Nicholson P, Yepiskoposyan H, Metze S, Zamudio Orozco R, Kleinschmidt N, Mühlemann O. Nonsense-mediated mRNA decay in human cells: mechanistic insights, functions beyond quality control and the double-life of NMD factors. Cell Mol Life Sci 2010; 67:677-700; PMID:19859661; http://dx.doi.org/10.1007/s00018-009-0177-1
  • Santos JH, Meyer JN, Skorvaga M, Annab LA, Van Houten, B. Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell 2004; 3:399-411; PMID:15569357; http://dx.doi.org/10.1111/j.1474-9728.2004.00124.x
  • Chung J, Khadka P, Chung IK. Nuclear import of hTERT requires a bipartite nuclear localization signal and Akt-mediated phosphorylation. J Cell Sci 2012; 125:2684-97; PMID:22366458; http://dx.doi.org/10.1242/jcs.099267
  • Xia J, Peng Y, Mian IS, Lue NF. Identification of functionally important domains in the N-terminal region of telomerase reverse transcriptase. Mol Cell Biol 2000; 20:5196-207; PMID:10866675; http://dx.doi.org/10.1128/MCB.20.14.5196-5207.2000
  • Seimiya H, Tanji M, Oh-hara T, Tomida A, Naasani I, Tsuruo T. Hypoxia up-regulates telomerase activity via mitogen-activated protein kinase signaling in human solid tumor cells. Biochem Biophys Res Commun 1999; 260:365-70; PMID:10403776; http://dx.doi.org/10.1006/bbrc.1999.0910
  • Haendeler J, Hoffmann J, Brandes RP, Zeiher AM, Dimmeler S. Hydrogen peroxide triggers nuclear export of telomerase reverse transcriptase via Src kinase family-dependent phosphorylation of tyrosine 707. Mol Cell Biol 2003; 23:4598-610; PMID:12808100; http://dx.doi.org/10.1128/MCB.23.13.4598-4610.2003
  • Arai K, Masutomi K, Khurts S, Kaneko S, Kobayashi K, Murakami S. Two independent regions of human telomerase reverse transcriptase are important for its oligomerization and telomerase activity. J Biol Chem 2002; 277:8538-44; PMID:11751869; http://dx.doi.org/10.1074/jbc.M111068200
  • Jakob S, Schroeder P, Lukosz M, Büchner N, Spyridopoulos I, Altschmied J, Haendeler J. Nuclear protein tyrosine phosphatase Shp-2 is one important negative regulator of nuclear export of telomerase reverse transcriptase. J Biol Chem 2008; 283:33155-61; PMID:18829466; http://dx.doi.org/10.1074/jbc.M805138200
  • Mavrogiannou E, Strati A, Stathopoulou A, Tsaroucha EG, Kaklamanis L, Lianidou ES. Real-time RT-PCR quantification of human telomerase reverse transcriptase splice variants in tumor cell lines and non-small cell lung cancer. Clin Chem 2007; 53:53-61; PMID:17130181; http://dx.doi.org/10.1373/clinchem.2006.073015
  • Lincz LF, Mudge LM, Scorgie FE, Sakoff JA, Hamilton CS, Seldon M. Quantification of hTERT splice variants in melanoma by SYBR green real-time polymerase chain reaction indicates a negative regulatory role for the beta deletion variant. Neoplasia 2008; 10:1131-7; PMID:18813352; http://dx.doi.org/10.1593/neo.08644
  • Ohyashiki JH, Hisatomi H, Nagao K, Honda S, Takaku T, Zhang Y, Sashida G, Ohyashiki K. Quantitative relationship between functionally active telomerase and major telomerase components (hTERT and hTR) in acute leukaemia cells. Br J Cancer 2005; 92:1942-7; PMID:15827550; http://dx.doi.org/10.1038/sj.bjc.6602546
  • Villa R, Porta CD, Folini M, Daidone MG, Zaffaroni N. Possible regulation of telomerase activity by transcription and alternative splicing of telomerase reverse transcriptase in human melanoma. J Invest Dermatol 2001; 116:867-73; PMID:11407973; http://dx.doi.org/10.1046/j.1523-1747.2001.01343.x
  • Liu Y, Wu BQ, Zhong HH, Tian XX, Fang WG. Quantification of alternative splicing variants of human telomerase reverse transcriptase and correlations with telomerase activity in lung cancer. PLoS One 2012; 7:e38868; PMID:22723897; http://dx.doi.org/10.1371/journal.pone.0038868
  • Rha SY, Jeung HC, Park KH, Kim JJ, Chung HC. Changes of telomerase activity by alternative splicing of full-length and beta variants of hTERT in breast cancer patients. Oncol Res 2009; 18:213-20; PMID:20225759; http://dx.doi.org/10.3727/096504009X12596189659123
  • Colgin LM, Wilkinson C, Englezou A, Kilian A, Robinson MO, Reddel RR. The hTERTalpha splice variant is a dominant negative inhibitor of telomerase activity. Neoplasia 2000; 2:426-32; PMID:11191109; http://dx.doi.org/10.1038/sj.neo.7900112
  • Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR. Protein composition of catalytically active human telomerase from immortal cells. Science 2007; 315:1850-3; PMID:17395830; http://dx.doi.org/10.1126/science.1138596
  • Yi X, Tesmer VM, Savre-Train I, Shay JW, Wright WE. Both transcriptional and posttranscriptional mechanisms regulate human telomerase template RNA levels. Mol Cell Biol 1999; 19:3989-97; PMID:10330139; http://dx.doi.org/10.1128/MCB.19.6.3989
  • Mukherjee S, Firpo EJ, Wang Y, Roberts JM. Separation of telomerase functions by reverse genetics. Proc Natl Acad Sci U S A 2011; 108:E1363-71; PMID:21949400; http://dx.doi.org/10.1073/pnas.1112414108
  • Santos JH, Meyer JN, Van Houten B. Mitochondrial localization of telomerase as a determinant for hydrogen peroxide-induced mitochondrial DNA damage and apoptosis. Hum Mol Genet 2006; 15:1757-68; PMID:16613901; http://dx.doi.org/10.1093/hmg/ddl098
  • Buchner N, Zschauer TC, Lukosz M, Altschmied J, Haendeler J. Downregulation of mitochondrial telomerase reverse transcriptase induced by H2O2 is Src kinase dependent. Exp Gerontol 2010; 45:558-62; PMID:20211239; http://dx.doi.org/10.1016/j.exger.2010.03.003
  • Haendeler J, Dröse S, Büchner N, Jakob S, Altschmied J, Goy C, Spyridopoulos I, Zeiher AM, Brandt U, Dimmeler S. Mitochondrial telomerase reverse transcriptase binds to and protects mitochondrial DNA and function from damage. Arterioscler Thromb Vasc Biol 2009; 29:929-35; PMID:19265030; http://dx.doi.org/10.1161/ATVBAHA.109.185546
  • Cerezo A, Kalthoff H, Schuermann M, Schafer B, Boukamp P. Dual regulation of telomerase activity through c-Myc-dependent inhibition and alternative splicing of hTERT. J Cell Sci 2002; 115:1305-12; PMID:11884529
  • Anderson CJ, Hoare SF, Ashcroft M, Bilsland AE, Keith WN. Hypoxic regulation of telomerase gene expression by transcriptional and post-transcriptional mechanisms. Oncogene 2006; 25:61-9; PMID:16170363
  • Forristal CE, Wright KL, Hanley NA, Oreffo RO, Houghton FD. Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reproduction 2010; 139:85-97; PMID:19755485; http://dx.doi.org/10.1530/REP-09-0300
  • Turner S, Wong HP, Rai J, Hartshorne GM. Telomere lengths in human oocytes, cleavage stage embryos and blastocysts. Molecular Human Reproduction 2010; 16:685-694; PMID:20573647; http://dx.doi.org/10.1093/molehr/gaq048
  • Akiyama M, Yamada O, Hideshima T, Yanagisawa T, Yokoi K, Fujisawa K, Eto Y, Yamada H, Anderson KC. TNFalpha induces rapid activation and nuclear translocation of telomerase in human lymphocytes. Biochem Biophys Res Commun 2004; 316:528-32; PMID:15020249; http://dx.doi.org/10.1016/j.bbrc.2004.02.080

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.