4,194
Views
43
CrossRef citations to date
0
Altmetric
Review

RNA- and protein-mediated control of Listeria monocytogenes virulence gene expression

&
Pages 460-470 | Received 25 Mar 2016, Accepted 09 May 2016, Published online: 01 Jul 2016

References

  • Membré J-M, Leporq B, Vialette M, Mettler E, Perrier L, Thuault D, Zwietering M. Temperature effect on bacterial growth rate: quantitative microbiology approach including cardinal values and variability estimates to perform growth simulations on/in food. Int J Food Microbiol 2005; 100:179-86; PMID:15854703; http://dx.doi.org/10.1016/j.ijfoodmicro.2004.10.015
  • Grundling A, Burrack LS, Bouwer HGA, Higgins DE. Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. Proc Natl Acad Sci USA 2004; 101:12318-23; PMID:15302931; http://dx.doi.org/10.1073/pnas.0404924101
  • Cossart P, Kocks C. The actin-based motility of the facultative intracellular pathogen Listeria monocytogenes. Mol Microbiol 1994; 13:395-402; PMID:7997157; http://dx.doi.org/10.1111/j.1365-2958.1994.tb00434.x
  • Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H, Brandt P, Chakraborty T, et al. Comparative genomics of Listeria species. Science 2001; 294:849-52; PMID:11679669; http://dx.doi.org/10.1126/science.1063447
  • Cossart P, Archambaud C. The bacterial pathogen Listeria monocytogenes: an emerging model in prokaryotic transcriptomics. J Biol 2009; 8:107; PMID:20053304; http://dx.doi.org/10.1186/jbiol202
  • Soni KA, Nannapaneni R, Tasara T. The contribution of transcriptomic and proteomic analysis in elucidating stress adaptation responses of Listeria monocytogenes. Foodborne Pathog Dis 2011; 8:843-52; PMID:21495855; http://dx.doi.org/10.1089/fpd.2010.0746
  • Archambaud C, Nahori M-A, Soubigou G, Bécavin C, Laval L, Lechat P, Smokvina T, Langella P, Lecuit M, Cossart P. Impact of lactobacilli on orally acquired listeriosis. Proc Natl Acad Sci USA 2012; 109:16684-9; PMID:23012479; http://dx.doi.org/10.1073/pnas.1212809109
  • Schultze T, Hilker R, Mannala GK, Gentil K, Weigel M, Farmani N, Windhorst AC, Goesmann A, Chakraborty T, Hain T. A detailed view of the intracellular transcriptome of Listeria monocytogenes in murine macrophages using RNA-seq. Front Microbiol 2015; 6:1199; PMID:26579105; http://dx.doi.org/10.3389/fmicb.2015.01199
  • las Heras de A, Cain RJ, Bielecka MK, Vázquez-Boland JA. Regulation of Listeria virulence: PrfA master and commander. Curr Opin Microbiol 2011; 14:118-27; PMID:21388862; http://dx.doi.org/10.1016/j.mib.2011.01.005
  • Milohanic E, Glaser P, Coppée J-Y, Frangeul L, Vega Y, Vázquez-Boland JA, Kunst F, Cossart P, Buchrieser C. Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol Microbiol 2003; 47:1613-25; PMID:12622816; http://dx.doi.org/10.1046/j.1365-2958.2003.03413.x
  • Xayarath B, Freitag NE. Optimizing the balance between host and environmental survival skills: lessons learned from Listeria monocytogenes. Future Microbiol 2012; 7:839-52; PMID:22827306; http://dx.doi.org/10.2217/fmb.12.57
  • Mellin JR, Cossart P. The non-coding RNA world of the bacterial pathogen Listeria monocytogenes. RNA Biol 2012; 9:372-8; PMID:22336762; http://dx.doi.org/10.4161/rna.19235
  • Schultze T, Izar B, Qing X, Mannala GK, Hain T. Current status of antisense RNA-mediated gene regulation in Listeria monocytogenes. Front Cell Infect Microbiol 2014; 4:135; PMID:25325017; http://dx.doi.org/10.3389/fcimb.2014.00135
  • Leimeister-Wächter M, Haffner C, Domann E, Goebel W, Chakraborty T. Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of Listeria monocytogenes. Proc Natl Acad Sci USA 1990; 87:8336-40; PMID:2122460; http://dx.doi.org/10.1073/pnas.87.21.8336
  • Mengaud J, Dramsi S, Gouin E, Vázquez-Boland JA, Milon G, Cossart P. Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated. Mol Microbiol 1991; 5:2273-83; PMID:1662763; http://dx.doi.org/10.1111/j.1365-2958.1991.tb02158.x
  • Körner H, Sofia HJ, Zumft WG. Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 2003; 27:559-92; PMID:14638413; http://dx.doi.org/10.1016/S0168-6445(03)00066-4
  • Hamon MA, Ribet D, Stavru F, Cossart P. Listeriolysin O: the Swiss army knife of Listeria. Trends Microbiol 2012; 20:360-8; PMID:22652164; http://dx.doi.org/10.1016/j.tim.2012.04.006
  • Kreft J, Vázquez-Boland JA. Regulation of virulence genes in Listeria. Int J Med Microbiol 2001; 291:145-57; PMID:11437337; http://dx.doi.org/10.1078/1438-4221-00111
  • Leimeister-Wächter M, Domann E, Chakraborty T. Detection of a gene encoding a phosphatidylinositol-specific phospholipase C that is co-ordinately expressed with listeriolysin in Listeria monocytogenes. Mol Microbiol 1991; 5:361-6; PMID:1645838; http://dx.doi.org/10.1111/j.1365-2958.1991.tb02117.x
  • Vázquez-Boland JA, Kocks C, Dramsi S, Ohayon H, Geoffroy C, Mengaud J, Cossart P. Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect Immun 1992; 60:219-30.
  • Poyart C, Abachin E, Razafimanantsoa I, Berche P. The zinc metalloprotease of Listeria monocytogenes is required for maturation of phosphatidylcholine phospholipase C: direct evidence obtained by gene complementation. Infect Immun 1993; 61:1576-80; PMID:8384163
  • Kocks C, Gouin E, Tabouret M, Berche P, Ohayon H, Cossart P. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 1992; 68:521-31; PMID:1739966; http://dx.doi.org/10.1016/0092-8674(92)90188-I
  • Pizarro-Cerda J, Kühbacher A, Cossart P. Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view. Cold Spring Harb Perspect Med 2012; 2:a010009-a010009; PMID:23125201; http://dx.doi.org/10.1101/cshperspect.a010009
  • Dussurget O, Cabanes D, Dehoux P, Lecuit M, Buchrieser C, Glaser P, Cossart P. European Listeria Genome Consortium. Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol 2002; 45:1095-106; PMID:12180927; http://dx.doi.org/10.1046/j.1365-2958.2002.03080.x
  • Renzoni A, Klarsfeld A, Dramsi S, Cossart P. Evidence that PrfA, the pleiotropic activator of virulence genes in Listeria monocytogenes, can be present but inactive. Infect Immun 1997; 65:1515-8; PMID:9119495
  • Renzoni A, Cossart P, Dramsi S. PrfA, the transcriptional activator of virulence genes, is upregulated during interaction of Listeria monocytogenes with mammalian cells and in eukaryotic cell extracts. Mol Microbiol 1999; 34:552-61; PMID:10564496; http://dx.doi.org/10.1046/j.1365-2958.1999.01621.x
  • Reniere ML, Whiteley AT, Hamilton KL, John SM, Lauer P, Brennan RG, Portnoy DA. Glutathione activates virulence gene expression of an intracellular pathogen. Nature 2015; 517:170-3; PMID:25567281; http://dx.doi.org/10.1038/nature14029
  • Camejo A, Buchrieser C, Couvé E, Carvalho F, Reis O, Ferreira P, Sousa S, Cossart P, Cabanes D. In vivo transcriptional profiling of Listeria monocytogenes and mutagenesis identify new virulence factors involved in infection. PLoS Pathog 2009; 5:e1000449; PMID:19478867; http://dx.doi.org/10.1371/journal.ppat.1000449
  • Freitag NE, Port GC, Miner MD. Listeria monocytogenes - from saprophyte to intracellular pathogen. Nat Rev Microbiol 2009; 7:623-8; PMID:19648949; http://dx.doi.org/10.1038/nrmicro2171
  • Chico-Calero I, Suárez M, González-Zorn B, Scortti M, Slaghuis J, Goebel W, Vázquez-Boland JA. European Listeria Genome Consortium. Hpt, a bacterial homolog of the microsomal glucose- 6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc Natl Acad Sci USA 2002; 99:431-6; PMID:11756655; http://dx.doi.org/10.1073/pnas.012363899
  • Joseph B, Mertins S, Stoll R, Schär J, Umesha KR, Luo Q, Müller-Altrock S, Goebel W. Glycerol metabolism and PrfA activity in Listeria monocytogenes. J Bacteriol 2008; 190:5412-30; PMID:18502850; http://dx.doi.org/10.1128/JB.00259-08
  • Wiedmann M, Arvik TJ, Hurley RJ, Boor KJ. General stress transcription factor sigmaB and its role in acid tolerance and virulence of Listeria monocytogenes. J Bacteriol 1998; 180:3650-6; PMID:9658010
  • Kazmierczak MJ, Mithoe SC, Boor KJ, Wiedmann M. Listeria monocytogenes sigma B regulates stress response and virulence functions. J Bacteriol 2003; 185:5722-34; PMID:13129943; http://dx.doi.org/10.1128/JB.185.19.5722-5734.2003
  • Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H, Balestrino D, Loh E, Gripenland J, Tiensuu T, Vaitkevicius K, et al. The Listeria transcriptional landscape from saprophytism to virulence. Nature 2009; 459:950-6; PMID:19448609; http://dx.doi.org/10.1038/nature08080
  • Oliver HF, Orsi RH, Ponnala L, Keich U, Wang W, Sun Q, Cartinhour SW, Filiatrault MJ, Wiedmann M, Boor KJ. Deep RNA sequencing of L. monocytogenes reveals overlapping and extensive stationary phase and sigma B-dependent transcriptomes, including multiple highly transcribed noncoding RNAs. BMC Genomics 2009; 10:641; PMID:20042087; http://dx.doi.org/10.1186/1471-2164-10-641
  • Nadon CA, Bowen BM, Wiedmann M, Boor KJ. Sigma B contributes to PrfA-mediated virulence in Listeria monocytogenes. Infect Immun 2002; 70:3948-52; PMID:12065541; http://dx.doi.org/10.1128/IAI.70.7.3948-3952.2002
  • Ollinger J, Bowen B, Wiedmann M, Boor KJ, Bergholz TM. Listeria monocytogenes sigmaB modulates PrfA-mediated virulence factor expression. Infect Immun 2009; 77:2113-24; PMID:19255187; http://dx.doi.org/10.1128/IAI.01205-08
  • Mandin P, Fsihi H, Dussurget O, Vergassola M, Milohanic E, Toledo-Arana A, Lasa I, Johansson J, Cossart P. VirR, a response regulator critical for Listeria monocytogenes virulence. Mol Microbiol 2005; 57:1367-80; PMID:16102006; http://dx.doi.org/10.1111/j.1365-2958.2005.04776.x
  • Kang J, Wiedmann M, Boor KJ, Bergholz TM. VirR-mediated resistance of Listeria monocytogenes against food antimicrobials and cross-protection induced by exposure to organic acid salts. Appl Environ Microbiol 2015; 81:4553-62; PMID:25911485; http://dx.doi.org/10.1128/AEM.00648-15
  • Abachin E, Poyart C, Pellegrini E, Milohanic E, Fiedler F, Berche P, Trieu-Cuot P. Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol Microbiol 2002; 43:1-14; PMID:11849532; http://dx.doi.org/10.1046/j.1365-2958.2002.02723.x
  • Thedieck K, Hain T, Mohamed W, Tindall BJ, Nimtz M, Chakraborty T, Wehland J, Jänsch L. The MprF protein is required for lysinylation of phospholipids in listerial membranes and confers resistance to cationic antimicrobial peptides (CAMPs) on Listeria monocytogenes. Mol Microbiol 2006; 62:1325-39; PMID:17042784; http://dx.doi.org/10.1111/j.1365-2958.2006.05452.x
  • Evers S, Quintiliani R, Courvalin P. Genetics of glycopeptide resistance in enterococci. Microb Drug Resist 1996; 2:219-23; PMID:9158763; http://dx.doi.org/10.1089/mdr.1996.2.219
  • Collins B, Curtis N, Cotter PD, Hill C, Ross RP. The ABC transporter AnrAB contributes to the innate resistance of Listeria monocytogenes to nisin, bacitracin, and various beta-lactam antibiotics. Antimicrob Agents Chemother 2010; 54:4416-23; PMID:20643901; http://dx.doi.org/10.1128/AAC.00503-10
  • Shen A, Higgins DE. The MogR transcriptional repressor regulates nonhierarchal expression of flagellar motility genes and virulence in Listeria monocytogenes. PLoS Pathog 2006; 2:e30; PMID:16617375; http://dx.doi.org/10.1371/journal.ppat.0020030
  • O'Neil HS, Marquis H. Listeria monocytogenes flagella are used for motility, not as adhesins, to increase host cell invasion. Infect Immun 2006; 74:6675-81; PMID:16982842; http://dx.doi.org/10.1128/IAI.00886-06
  • Lemon KP, Higgins DE, Kolter R. Flagellar motility is critical for Listeria monocytogenes biofilm formation. J Bacteriol 2007; 189:4418-24; PMID:17416647; http://dx.doi.org/10.1128/JB.01967-06
  • Kamp HD, Higgins DE. Transcriptional and post-transcriptional regulation of the GmaR antirepressor governs temperature-dependent control of flagellar motility in Listeria monocytogenes. Mol Microbiol 2009; 74:421-35; PMID:19796338; http://dx.doi.org/10.1111/j.1365-2958.2009.06874.x
  • Kamp HD, Higgins DE. A protein thermometer controls temperature-dependent transcription of flagellar motility genes in Listeria monocytogenes. PLoS Pathog 2011; 7:e1002153.; PMID:21829361; http;//dx.doi.org/10.1371/journal.ppat.1002153
  • Michel E, Mengaud J, Galsworthy S, Cossart P. Characterization of a large motility gene cluster containing the cheR, motAB genes of Listeria monocytogenes and evidence that PrfA downregulates motility genes. FEMS Microbiol Lett 1998; 169:341-7; PMID:9868779; http://dx.doi.org/10.1111/j.1574-6968.1998.tb13338.x
  • Shetron-Rama LM, Mueller K, Bravo JM, Bouwer HGA, Way SS, Freitag NE. Isolation of Listeria monocytogenes mutants with high-level in vitro expression of host cytosol-induced gene products. Mol Microbiol 2003; 48:1537-51; PMID:12791137; http://dx.doi.org/10.1046/j.1365-2958.2003.03534.x
  • Bennett HJ, Pearce DM, Glenn S, Taylor CM, Kuhn M, Sonenshein AL, Andrew PW, Roberts IS. Characterization of relA and codY mutants of Listeria monocytogenes: identification of the CodY regulon and its role in virulence. Mol Microbiol 2007; 63:1453-67; PMID:17302820; http://dx.doi.org/10.1111/j.1365-2958.2007.05597.x
  • Lobel L, Sigal N, Borovok I, Ruppin E, Herskovits AA. Integrative genomic analysis identifies isoleucine and CodY as regulators of Listeria monocytogenes virulence. PLoS Genet 2012; 8:e1002887; PMID:22969433; http://dx.doi.org/10.1371/journal.pgen.1002887
  • Lobel L, Herskovits AA. Systems Level Analyses Reveal Multiple Regulatory Activities of CodY Controlling Metabolism, Motility and Virulence in Listeria monocytogenes. PLoS Genet 2016; 12:e1005870; PMID:26895237; http://dx.doi.org/10.1371/journal.pgen.1005870
  • Lobel L, Sigal N, Borovok I, Belitsky BR, Sonenshein AL, Herskovits AA. The metabolic regulator CodY links Listeria monocytogenes metabolism to virulence by directly activating the virulence regulatory gene prfA. Mol Microbiol 2015; 95:624-44; PMID:25430920; http://dx.doi.org/10.1111/mmi.12890
  • Loh E, Gripenland J, Johansson J. Control of Listeria monocytogenes virulence by 5′-untranslated RNA. Trends Microbiol 2006; 14:294-8; PMID:16730443; http://dx.doi.org/10.1016/j.tim.2006.05.001
  • Shen A, Higgins DE. The 5' untranslated region-mediated enhancement of intracellular listeriolysin O production is required for Listeria monocytogenes pathogenicity. Mol Microbiol 2005; 57:1460-73; PMID:16102013; http://dx.doi.org/10.1111/j.1365-2958.2005.04780.x
  • Balestrino D, Hamon MA, Dortet L, Nahori M-A, Pizarro-Cerda J, Alignani D, Dussurget O, Cossart P, Toledo-Arana A. Single-cell techniques using chromosomally tagged fluorescent bacteria to study Listeria monocytogenes infection processes. Appl Environ Microbiol 2010; 76:3625-36; PMID:20363781; http://dx.doi.org/10.1128/AEM.02612-09
  • Stritzker J, Schoen C, Goebel W. Enhanced synthesis of internalin A in aro mutants of Listeria monocytogenes indicates posttranscriptional control of the inlAB mRNA. J Bacteriol 2005; 187:2836-45; PMID:15805530; http://dx.doi.org/10.1128/JB.187.8.2836-2845.2005
  • Agaisse H, Lereclus D. STAB-SD: a Shine-Dalgarno sequence in the 5' untranslated region is a determinant of mRNA stability. Mol Microbiol 1996; 20:633-43; PMID:8736542; http://dx.doi.org/10.1046/j.1365-2958.1996.5401046.x
  • Köhler S, Bubert A, Vogel M, Goebel W. Expression of the iap gene coding for protein p60 of Listeria monocytogenes is controlled on the posttranscriptional level. J Bacteriol 1991; 173:4668-74; PMID:1906869
  • Wong KKY, Bouwer HGA, Freitag NE. Evidence implicating the 5' untranslated region of Listeria monocytogenes actA in the regulation of bacterial actin-based motility. Cell Microbiol 2004; 6:155-66; PMID:14706101; http://dx.doi.org/10.1046/j.1462-5822.2003.00348.x
  • Mraheil MA, Billion A, Mohamed W, Mukherjee K, Kuenne C, Pischimarov J, Krawitz C, Retey J, Hartsch T, Chakraborty T, et al. The intracellular sRNA transcriptome of Listeria monocytogenes during growth in macrophages. Nucleic Acids Res 2011; 39:4235-48; PMID:21278422; http://dx.doi.org/10.1093/nar/gkr033
  • Loh E, Memarpour F, Vaitkevicius K, Kallipolitis BH, Johansson J, Sondén B. An unstructured 5'-coding region of the prfA mRNA is required for efficient translation. Nucleic Acids Res 2012; 40:1818-27; PMID:22053088; http://dx.doi.org/10.1093/nar/gkr850
  • Leimeister-Wächter M, Domann E, Chakraborty T. The expression of virulence genes in Listeria monocytogenes is thermoregulated. J Bacteriol 1992; 174:947-52; PMID:1732227
  • Johansson J, Mandin P, Renzoni A, Chiaruttini C, Springer M, Cossart P. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 2002; 110:551-61; PMID:12230973; http://dx.doi.org/10.1016/S0092-8674(02)00905-4
  • Iost I, Bizebard T, Dreyfus M. Functions of DEAD-box proteins in bacteria: current knowledge and pending questions. Biochim Biophys Acta 2013; 1829:866-77; PMID:23415794; http://dx.doi.org/10.1016/j.bbagrm.2013.01.012
  • Schmid B, Klumpp J, Raimann E, Loessner MJ, Stephan R, Tasara T. Role of cold shock proteins in growth of Listeria monocytogenes under cold and osmotic stress conditions. Appl Environ Microbiol 2009; 75:1621-7; PMID:19151183; http://dx.doi.org/10.1128/AEM.02154-08
  • Bäreclev C, Vaitkevicius K, Netterling S, Johansson J. DExD-box RNA-helicases in Listeria monocytogenes are important for growth, ribosomal maturation, rRNA processing and virulence factor expression. RNA Biol 2014; 11:1458-67; PMID:25590644; http;//dx.doi.org/10.1080/15476286.2014.996099.
  • Chan YC, Raengpradub S, Boor KJ, Wiedmann M. Microarray-based characterization of the Listeria monocytogenes cold regulon in log- and stationary-phase cells. Appl Environ Microbiol 2007; 73:6484-98; PMID:17720827; http://dx.doi.org/10.1128/AEM.00897-07
  • Markkula A, Mattila M, Lindström M, Korkeala H. Genes encoding putative DEAD-box RNA helicases in Listeria monocytogenes EGD-e are needed for growth and motility at 3°C. Environ Microbiol 2012; 14:2223-32; PMID:22564273; http://dx.doi.org/10.1111/j.1462-2920.2012.02761.x
  • Netterling S, Vaitkevicius K, Nord S, Johansson J. A Listeria monocytogenes RNA helicase essential for growth and ribosomal maturation at low temperatures uses its C terminus for appropriate interaction with the ribosome. J Bacteriol 2012; 194:4377-85; PMID:22707705; http://dx.doi.org/10.1128/JB.00348-12
  • Netterling S, Bäreclev C, Vaitkevicius K, Johansson J. An RNA-helicase important for Listeria monocytogenes haemolytic activity and virulence factor expression. Infect Immun 2015; 84(1):67-76; PMID:25939511; http://dx.doi.org/10.1128/IAI.00849-15
  • Peselis A, Serganov A. Themes and variations in riboswitch structure and function. Biochim Biophys Acta 2014; 1839:908-18; PMID:24583553; http://dx.doi.org/10.1016/j.bbagrm.2014.02.012
  • Mellin JR, Tiensuu T, Bécavin C, Gouin E, Johansson J, Cossart P. A riboswitch-regulated antisense RNA in Listeria monocytogenes. Proc Natl Acad Sci USA 2013; 110:13132-7; PMID:23878253; http://dx.doi.org/10.1073/pnas.1304795110
  • Mellin JR, Koutero M, Dar D, Nahori M-A, Sorek R, Cossart P. Sequestration of a two-component response regulator by a riboswitch-regulated noncoding RNA. Science 2014; 345:940-3; PMID:25146292; http://dx.doi.org/10.1126/science.1255083
  • DebRoy S, Gebbie M, Ramesh A, Goodson JR, Cruz MR, van Hoof A, Winkler WC, Garsin DA. A riboswitch-containing sRNA controls gene expression by sequestration of a response regulator. Science 2014; 345:937-40; PMID:25146291; http://dx.doi.org/10.1126/science.1255091
  • Tsoy O, Ravcheev D, Mushegian A. Comparative genomics of ethanolamine utilization. J Bacteriol 2009; 191:7157-64; PMID:19783625; http://dx.doi.org/10.1128/JB.00838-09
  • Dar D, Shamir M, Mellin JR, Koutero M, Stern-Ginossar N, Cossart P, Sorek R. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science 2016; 352:aad9822-2; PMID:27120414; http://dx.doi.org/10.1126/science.aad9822
  • Mellin JR, Cossart P. Unexpected versatility in bacterial riboswitches. Trends Genet 2015; 31:150-6; PMID:25708284; http://dx.doi.org/10.1016/j.tig.2015.01.005
  • Puttamreddy S, Carruthers MD, Madsen ML, Minion FC. Transcriptome analysis of organisms with food safety relevance. Foodborne Pathog Dis 2008; 5:517-29; PMID:18673071; http://dx.doi.org/10.1089/fpd.2008.0112
  • Wurtzel O, Sesto N, Mellin JR, Karunker I, Edelheit S, Bécavin C, Archambaud C, Cossart P, Sorek R. Comparative transcriptomics of pathogenic and non-pathogenic Listeria species. Mol Syst Biol 2012; 8:583; PMID:22617957; http://dx.doi.org/10.1038/msb.2012.11
  • Thomason MK, Storz G. Bacterial antisense RNAs: how many are there, and what are they doing? Annu Rev Genet 2010; 44:167-88; PMID:20707673; http://dx.doi.org/10.1146/annurev-genet-102209-163523
  • Sesto N, Wurtzel O, Archambaud C, Sorek R, Cossart P. The excludon: a new concept in bacterial antisense RNA-mediated gene regulation. Nat Rev Microbiol 2013; 11:75-82; PMID:23268228; http://dx.doi.org/10.1038/nrmicro2934
  • Oliva G, Sahr T, Buchrieser C. Small RNAs, 5' UTR elements and RNA-binding proteins in intracellular bacteria: impact on metabolism and virulence. FEMS Microbiol Rev 2015; 39:331-49; PMID:26009640; http://dx.doi.org/10.1093/femsre/fuv022
  • Sesto N, Koutero M, Cossart P. Bacterial and cellular RNAs at work during Listeria infection. Future Microbiol 2014; 9:1025-37; PMID:25340833; http://dx.doi.org/10.2217/fmb.14.79
  • Gottesman S, Storz G. Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 2011; 3:a003798-8; PMID:20980440; http://dx.doi.org/10.1101/cshperspect.a003798
  • Mandin P, Repoila F, Vergassola M, Geissmann T, Cossart P. Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets. Nucleic Acids Res 2007; 35:962-74; PMID:17259222; http://dx.doi.org/10.1093/nar/gkl1096
  • Christiansen JK, Larsen MH, Ingmer H, Søgaard-Andersen L, Kallipolitis BH. The RNA-binding protein Hfq of Listeria monocytogenes: role in stress tolerance and virulence. J Bacteriol 2004; 186:3355-62; PMID:15150220; http://dx.doi.org/10.1128/JB.186.11.3355-3362.2004
  • Christiansen JK, Nielsen JS, Ebersbach T, Valentin-Hansen P, Søgaard-Andersen L, Kallipolitis BH. Identification of small Hfq-binding RNAs in Listeria monocytogenes. RNA 2006; 12:1383-96; PMID:16682563; http://dx.doi.org/10.1261/rna.49706
  • Nielsen JS, Lei LK, Ebersbach T, Olsen AS, Klitgaard JK, Valentin-Hansen P, Kallipolitis BH. Defining a role for Hfq in Gram-positive bacteria: evidence for Hfq-dependent antisense regulation in Listeria monocytogenes. Nucleic Acids Res 2010; 38:907-19; PMID:19942685; http://dx.doi.org/10.1093/nar/gkp1081
  • Nielsen JS, Larsen MH, Lillebæk EMS, Bergholz TM, Christiansen MHG, Boor KJ, Wiedmann M, Kallipolitis BH. A small RNA controls expression of the chitinase ChiA in Listeria monocytogenes. PLoS One 2011; 6:e19019; PMID:21533114; http://dx.doi.org/10.1371/journal.pone.0019019
  • Chaudhuri S, Bruno JC, Alonzo F, Xayarath B, Cianciotto NP, Freitag NE. Contribution of chitinases to Listeria monocytogenes pathogenesis. Appl Environ Microbiol 2010; 76:7302-5; PMID:20817810; http://dx.doi.org/10.1128/AEM.01338-10
  • Burke TP, Portnoy DA. SpoVG is a conserved RNA-binding protein that regulates Listeria monocytogenes lysozyme resistance, virulence, and swarming motility. MBio 2016; 7:e00240-16; PMID:27048798; http://dx.doi.org/10.1128/mBio.00240-16
  • Quereda JJ, Ortega AD, Pucciarelli MG, García-del Portillo F. The listeria small RNA Rli27 regulates a cell wall protein inside eukaryotic cells by targeting a long 5'-UTR variant. PLoS Genet 2014; 10:e1004765; PMID:25356775; http://dx.doi.org/10.1371/journal.pgen.1004765
  • Loh E, Dussurget O, Gripenland J, Vaitkevicius K, Tiensuu T, Mandin P, Repoila F, Buchrieser C, Cossart P, Johansson J. A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell 2009; 139:770-9; PMID:19914169; http://dx.doi.org/10.1016/j.cell.2009.08.046
  • Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science 2010; 327:167-70; PMID:20056882; http://dx.doi.org/10.1126/science.1179555
  • Sesto N, Touchon M, Andrade JM, Kondo J, Rocha EPC, Arraiano CM, Archambaud C, Westhof E, Romby P, Cossart P. A PNPase dependent CRISPR system in listeria. PLoS Genet 2014; 10:e1004065; PMID:24415952; http://dx.doi.org/10.1371/journal.pgen.1004065
  • Bruno JC, Freitag NE. Constitutive activation of PrfA tilts the balance of Listeria monocytogenes fitness towards life within the host versus environmental survival. PLoS One 2010; 5:e15138; PMID:21151923; http://dx.doi.org/10.1371/journal.pone.0015138
  • Hain T, Ghai R, Billion A, Kuenne C, Steinweg C, Izar B, Mohamed W, Mraheil M, Domann E, Schaffrath S, et al. Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes. BMC Genomics 2012; 13:144; PMID:22530965; http://dx.doi.org/10.1186/1471-2164-13-144
  • Marbaniang CN, Vogel J. Emerging roles of RNA modifications in bacteria. Curr Opin Microbiol 2016; 30:50-7; PMID:26803287; http://dx.doi.org/10.1016/j.mib.2016.01.001
  • Abdullah Z, Schlee M, Roth S, Mraheil MA, Barchet W, Böttcher J, Hain T, Geiger S, Hayakawa Y, Fritz JH, et al. RIG-I detects infection with live Listeria by sensing secreted bacterial nucleic acids. EMBO J 2012; 31(21):4153-4164; PMID:23064150; http://dx.doi.org/10.1038/emboj.2012.274
  • Hagmann CA, Herzner AM, Abdullah Z, Zillinger T, Jakobs C, Schuberth C, Coch C, Higgins PG, Wisplinghoff H, Barchet W, et al. RIG-I detects triphosphorylated RNA of Listeria monocytogenes during infection in non-immune cells. PLoS One 2013; 8:e62872; PMID:23653683; http://dx.doi.org/10.1371/journal.pone.0062872
  • Cossart P, Lebreton A. A trip in the “New Microbiology” with the bacterial pathogen Listeria monocytogenes. FEBS Lett 2014; 588:2437-45; PMID:24911203; http://dx.doi.org/10.1016/j.febslet.2014.05.051