1,986
Views
21
CrossRef citations to date
0
Altmetric
Review

RNA-based mechanisms of virulence control in Enterobacteriaceae

, &
Pages 471-487 | Received 23 Mar 2016, Accepted 09 Jun 2016, Published online: 21 Jul 2016

References

  • Waters LS, Storz G. Regulatory RNAs in bacteria. Cell 2009; 136:615-28; PMID:19239884; http://dx.doi.org/10.1016/j.cell.2009.01.043
  • Gottesman S, Storz G. Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 2011; 3:pii: a003798; PMID:20980440; http://dx.doi.org/10.1101/cshperspect.a003798
  • Caldelari I, Chao Y, Romby P, Vogel J. RNA-mediated regulation in pathogenic bacteria. Cold Spring Harb Perspect Med 2013; 3:a010298; PMID:24003243; http://dx.doi.org/10.1101/cshperspect.a010298
  • Papenfort K, Vogel J. Small RNA functions in carbon metabolism and virulence of enteric pathogens. Front Cell Infect Microbiol 2014; 4:91; PMID:25077072; http://dx.doi.org/10.3389/fcimb.2014.00091
  • Koo JT, Alleyne TM, Schiano CA, Jafari N, Lathem WW. Global discovery of small RNAs in Yersinia pseudotuberculosis identifies Yersinia-specific small, noncoding RNAs required for virulence. Proc Natl Acad Sci U S A 2011; 108:E709-17; PMID:21876162; http://dx.doi.org/10.1073/pnas.1101655108
  • Koo JT, Lathem WW. Global discovery of small noncoding RNAs in pathogenic Yersinia species. Adv Exp Med Biol 2012; 954:305-14; PMID:22782777; http://dx.doi.org/10.1007/978-1-4614-3561-7_38
  • Nuss AM, Heroven AK, Waldmann B, Reinkensmeier J, Jarek M, Beckstette M, Dersch P. Transcriptomic profiling of Yersinia pseudotuberculosis reveals reprogramming of the Crp regulon by temperature and uncovers Crp as a master regulator of small RNAs. PLoS Genet 2015; 11:e1005087; PMID:25816203; http://dx.doi.org/10.1371/journal.pgen.1005087
  • Landstorfer R, Simon S, Schober S, Keim D, Scherer S, Neuhaus K. Comparison of strand-specific transcriptomes of enterohemorrhagic Escherichia coli O157:H7 EDL933 (EHEC) under eleven different environmental conditions including radish sprouts and cattle feces. BMC Genomics 2014; 15:353; PMID:24885796; http://dx.doi.org/10.1186/1471-2164-15-353
  • Raghavan R, Groisman EA, Ochman H. Genome-wide detection of novel regulatory RNAs in E. coli. Genome Res 2011; 21:1487-97; PMID:21665928; http://dx.doi.org/10.1101/gr.119370.110
  • Storz G, Vogel J, Wassarman KM. Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 2011; 43:880-91; PMID:21925377; http://dx.doi.org/10.1016/j.molcel.2011.08.022
  • Vogel J, Luisi BF. Hfq and its constellation of RNA. Nat Rev Microbiol 2011; 9:578-89; PMID:21760622; http://dx.doi.org/10.1038/nrmicro2615
  • Viegas SC, Pfeiffer V, Sittka A, Silva IJ, Vogel J, Arraiano CM. Characterization of the role of ribonucleases in Salmonella small RNA decay. Nucleic Acids Res 2007; 35:7651-64; PMID:17982174; http://dx.doi.org/10.1093/nar/gkm916
  • Saramago M, Barria C, Dos Santos RF, Silva IJ, Pobre V, Domingues S, Andrade JM, Viegas SC, Arraiano CM. The role of RNases in the regulation of small RNAs. Curr Opin Microbiol 2014; 18:105-15; PMID:24704578; http://dx.doi.org/10.1016/j.mib.2014.02.009
  • Kortmann J, Narberhaus F. Bacterial RNA thermometers: molecular zippers and switches. Nat Rev Microbiol 2012; 10:255-65; PMID:22421878; http://dx.doi.org/10.1038/nrmicro2730
  • Steinmann R, Dersch P. Thermosensing to adjust bacterial virulence in a fluctuating environment. Future Microbiol 2013; 8:85-105; PMID:23252495; http://dx.doi.org/10.2217/fmb.12.129
  • Serganov A, Nudler E. A decade of riboswitches. Cell 2013; 152:17-24; PMID:23332744; http://dx.doi.org/10.1016/j.cell.2012.12.024
  • Mellin JR, Cossart P. Unexpected versatility in bacterial riboswitches. Trends Genet 2015; 31:150-6; PMID:25708284; http://dx.doi.org/10.1016/j.tig.2015.01.005
  • Peselis A, Serganov A. Themes and variations in riboswitch structure and function. Biochim Biophys Acta 2014; 1839:908-18; PMID:24583553; http://dx.doi.org/10.1016/j.bbagrm.2014.02.012
  • Henkin TM. Riboswitch RNAs: using RNA to sense cellular metabolism. Genes Dev 2008; 22:3383-90; PMID:19141470; http://dx.doi.org/10.1101/gad.1747308
  • Papenfort K, Vogel J. Regulatory RNA in bacterial pathogens. Cell Host Microbe 2010; 8:116-27; PMID:20638647; http://dx.doi.org/10.1016/j.chom.2010.06.008
  • Chao Y, Vogel J. The role of Hfq in bacterial pathogens. Curr Opin Microbiol 2010; 13:24-33; PMID:20080057; http://dx.doi.org/10.1016/j.mib.2010.01.001
  • Sobrero P, Valverde C. The bacterial protein Hfq: much more than a mere RNA-binding factor. Crit Rev Microbiol 2012; 38:276-99; PMID:22435753; http://dx.doi.org/10.3109/1040841X.2012.664540
  • Wagner EG. Cycling of RNAs on Hfq. RNA Biol 2013; 10:619-26; PMID:23466677; http://dx.doi.org/10.4161/rna.24044
  • Morita T, Maki K, Aiba H. RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev 2005; 19:2176-86; PMID:16166379; http://dx.doi.org/10.1101/gad.1330405
  • Hajnsdorf E, Regnier P. Host factor Hfq of Escherichia coli stimulates elongation of poly(A) tails by poly(A) polymerase I. Proc Natl Acad Sci U S A 2000; 97:1501-5; PMID:10677490; http://dx.doi.org/10.1073/pnas.040549897
  • Heroven AK, Bohme K, Dersch P. The Csr/Rsm system of Yersinia and related pathogens: A post-transcriptional strategy for managing virulence. RNA Biol 2012; 9:379-91; PMID:22336760; http://dx.doi.org/10.4161/rna.19333
  • Vakulskas CA, Potts AH, Babitzke P, Ahmer BM, Romeo T. Regulation of Bacterial Virulence by Csr (Rsm) Systems. Microbiol Mol Biol Rev 2015; 79:193-224; PMID:25833324; http://dx.doi.org/10.1128/MMBR.00052-14
  • Dubey AK, Baker CS, Romeo T, Babitzke P. RNA sequence and secondary structure participate in high-affinity CsrA-RNA interaction. Rna 2005; 11:1579-87; PMID:16131593; http://dx.doi.org/10.1261/rna.2990205
  • Kulkarni PR, Jia T, Kuehne SA, Kerkering TM, Morris ER, Searle MS, Heeb S, Rao J, Kulkarni RV. A sequence-based approach for prediction of CsrA/RsmA targets in bacteria with experimental validation in Pseudomonas aeruginosa. Nucleic Acids Res 2014; 42:6811-25; PMID:24782516; http://dx.doi.org/10.1093/nar/gku309
  • Holmqvist E, Wright PR, Li L, Bischler T, Barquist L, Reinhardt R, Backofen R, Vogel J. Global RNA recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo. EMBO J 2016; 35:991-1011; PMID:27044921; http://dx.doi.org/10.15252/embj.201593360
  • Yakhnin AV, Baker CS, Vakulskas CA, Yakhnin H, Berezin I, Romeo T, Babitzke P. CsrA activates flhDC expression by protecting flhDC mRNA from RNase E-mediated cleavage. Mol Microbiol 2013; 87:851-66; PMID:23305111; http://dx.doi.org/10.1111/mmi.12136
  • Babitzke P, Romeo T. CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr Opin Microbiol 2007; 10:156-63; PMID:17383221; http://dx.doi.org/10.1016/j.mib.2007.03.007
  • Liu MY, Gui G, Wei B, Preston JF, 3rd, Oakford L, Yuksel U, Giedroc DP, Romeo T. The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J Biol Chem 1997; 272:17502-10; PMID:9211896; http://dx.doi.org/10.1074/jbc.272.28.17502
  • Kulkarni PR, Cui X, Williams JW, Stevens AM, Kulkarni RV. Prediction of CsrA-regulating small RNAs in bacteria and their experimental verification in Vibrio fischeri. Nucleic Acids Res 2006; 34:3361-9; PMID:16822857; http://dx.doi.org/10.1093/nar/gkl439
  • Heroven A, Bohme K, Rohde M, Dersch P. A Csr-type regulatory system, including small non-coding RNAs, regulates the global virulence regulator RovA of Yersinia pseudotuberculosis through RovM. Mol Microbiol 2008; 68:1179-95; PMID:18430141; http://dx.doi.org/10.1111/j.1365-2958.2008.06218.x
  • Garneau NL, Wilusz J, Wilusz CJ. The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 2007; 8:113-26; PMID:17245413; http://dx.doi.org/10.1038/nrm2104
  • Silva IJ, Saramago M, Dressaire C, Domingues S, Viegas SC, Arraiano CM. Importance and key events of prokaryotic RNA decay: the ultimate fate of an RNA molecule. Wiley Interdiscip Rev RNA 2011; 2:818-36; PMID:21976285; http://dx.doi.org/10.1002/wrna.94
  • Lalaouna D, Simoneau-Roy M, Lafontaine D, Masse E. Regulatory RNAs and target mRNA decay in prokaryotes. Biochim Biophys Acta 2013; 1829:742-7; PMID:23500183; http://dx.doi.org/10.1016/j.bbagrm.2013.02.013
  • Buskila AA, Kannaiah S, Amster-Choder O. RNA localization in bacteria. RNA Biol 2014; 11:1051-60; PMID:25482897; http://dx.doi.org/10.4161/rna.36135
  • Nevo-Dinur K, Govindarajan S, Amster-Choder O. Subcellular localization of RNA and proteins in prokaryotes. Trends Genet 2012; 28:314-22; PMID:22521614; http://dx.doi.org/10.1016/j.tig.2012.03.008
  • Pizarro-Cerda J, Cossart P. Bacterial adhesion and entry into host cells. Cell 2006; 124:715-27; PMID:16497583; http://dx.doi.org/10.1016/j.cell.2006.02.012
  • Pawar DM, Rossman ML, Chen J. Role of curli fimbriae in mediating the cells of enterohaemorrhagic Escherichia coli to attach to abiotic surfaces. J Appl Microbiol 2005; 99:418-25; PMID:16033475; http://dx.doi.org/10.1111/j.1365-2672.2005.02499.x
  • Barnhart MM, Chapman MR. Curli biogenesis and function. Annu Rev Microbiol 2006; 60:131-47; PMID:16704339; http://dx.doi.org/10.1146/annurev.micro.60.080805.142106
  • Bordeau V, Felden B. Curli synthesis and biofilm formation in enteric bacteria are controlled by a dynamic small RNA module made up of a pseudoknot assisted by an RNA chaperone. Nucleic Acids Res 2014; 42:4682-96; PMID:24489123; http://dx.doi.org/10.1093/nar/gku098
  • Boehm A, Vogel J. The csgD mRNA as a hub for signal integration via multiple small RNAs. Mol Microbiol 2012; 84:1-5; PMID:22414234; http://dx.doi.org/10.1111/j.1365-2958.2012.08033.x
  • Urban JH, Vogel J. Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation. PLoS Biol 2008; 6:e64; PMID:18351803; http://dx.doi.org/10.1371/journal.pbio.0060064
  • Gopel Y, Luttmann D, Heroven AK, Reichenbach B, Dersch P, Gorke B. Common and divergent features in transcriptional control of the homologous small RNAs GlmY and GlmZ in Enterobacteriaceae. Nucleic Acids Res 2011; 39:1294-309; PMID:20965974; http://dx.doi.org/10.1093/nar/gkq986
  • Gruber CC, Sperandio V. Global analysis of posttranscriptional regulation by GlmY and GlmZ in enterohemorrhagic Escherichia coli O157:H7. Infect Immun 2015; 83:1286-95; PMID:25605763; http://dx.doi.org/10.1128/IAI.02918-14
  • Teplitski M, Al-Agely A, Ahmer BM. Contribution of the SirA regulon to biofilm formation in Salmonella enterica serovar Typhimurium. Microbiology 2006; 152:3411-24; PMID:17074910; http://dx.doi.org/10.1099/mic.0.29118-0
  • Sterzenbach T, Nguyen KT, Nuccio SP, Winter MG, Vakulskas CA, Clegg S, Romeo T, Bäumler AJ. A novel CsrA titration mechanism regulates fimbrial gene expression in Salmonella typhimurium. EMBO J 2013; 32:2872-83; PMID:24056837; http://dx.doi.org/10.1038/emboj.2013.206
  • McDaniel TK, Kaper JB. A cloned pathogenicity island from enteropathogenic Escherichia coli confers the attaching and effacing phenotype on E. coli K-12. Mol Microbiol 1997; 23:399-407; PMID:9044273; http://dx.doi.org/10.1046/j.1365-2958.1997.2311591.x
  • Bhatt S, Edwards AN, Nguyen HT, Merlin D, Romeo T, Kalman D. The RNA binding protein CsrA is a pleiotropic regulator of the locus of enterocyte effacement pathogenicity island of enteropathogenic Escherichia coli. Infect Immun 2009; 77:3552-68; PMID:19581394; http://dx.doi.org/10.1128/IAI.00418-09
  • Gruber CC, Sperandio V. Posttranscriptional control of microbe-induced rearrangement of host cell actin. MBio 2014; 5:e01025-13; PMID:24425733; http://dx.doi.org/10.1128/mBio.01025-13
  • Martinez LC, Yakhnin H, Camacho MI, Georgellis D, Babitzke P, Puente JL, Bustamante VH. Integration of a complex regulatory cascade involving the SirA/BarA and Csr global regulatory systems that controls expression of the Salmonella SPI-1 and SPI-2 virulence regulons through HilD. Mol Microbiol 2011; 80:1637-56; PMID:21518393; http://dx.doi.org/10.1111/j.1365-2958.2011.07674.x
  • Gore AL, Payne SM. CsrA and Cra influence Shigella flexneri pathogenesis. Infect Immun 2010; 78:4674-82; PMID:20713625; http://dx.doi.org/10.1128/IAI.00589-10
  • Adler B, Sasakawa C, Tobe T, Makino S, Komatsu K, Yoshikawa M. A dual transcriptional activation system for the 230 kb plasmid genes coding for virulence-associated antigens of Shigella flexneri. Mol Microbiol 1989; 3:627-35; PMID:2474742; http://dx.doi.org/10.1111/j.1365-2958.1989.tb00210.x
  • Vanderpool CK. Physiological consequences of small RNA-mediated regulation of glucose-phosphate stress. Curr Opin Microbiol 2007; 10:146-51; PMID:17383224; http://dx.doi.org/10.1016/j.mib.2007.03.011
  • Bobrovskyy M, Vanderpool CK. The small RNA SgrS: roles in metabolism and pathogenesis of enteric bacteria. Front Cell Infect Microbiol 2014; 4:61; PMID:24847473; http://dx.doi.org/10.3389/fcimb.2014.00061
  • Bobrovskyy M, Vanderpool CK. Diverse mechanisms of post-transcriptional repression by the small RNA regulator of glucose-phosphate stress. Mol Microbiol 2016; 99:254-73; PMID:26411266; http://dx.doi.org/10.1111/mmi.13230
  • Papenfort K, Podkaminski D, Hinton JC, Vogel J. The ancestral SgrS RNA discriminates horizontally acquired Salmonella mRNAs through a single G-U wobble pair. Proc Natl Acad Sci U S A 2012; 109:E757-64; PMID:22383560; http://dx.doi.org/10.1073/pnas.1119414109
  • Papenfort K, Sun Y, Miyakoshi M, Vanderpool CK, Vogel J. Small RNA-mediated activation of sugar phosphatase mRNA regulates glucose homeostasis. Cell 2013; 153:426-37; PMID:23582330; http://dx.doi.org/10.1016/j.cell.2013.03.003
  • Giangrossi M, Prosseda G, Tran CN, Brandi A, Colonna B, Falconi M. A novel antisense RNA regulates at transcriptional level the virulence gene icsA of Shigella flexneri. Nucleic Acids Res 2010; 38:3362-75; PMID:20129941; http://dx.doi.org/10.1093/nar/gkq025
  • Tran CN, Giangrossi M, Prosseda G, Brandi A, Di Martino ML, Colonna B, Falconi M. A multifactor regulatory circuit involving H-NS, VirF and an antisense RNA modulates transcription of the virulence gene icsA of Shigella flexneri. Nucleic Acids Res 2011; 39:8122-34; PMID:21724612; http://dx.doi.org/10.1093/nar/gkr521
  • Pichon C, du Merle L, Lequeutre I, Le Bouguenec C. The AfaR small RNA controls expression of the AfaD-VIII invasin in pathogenic Escherichia coli strains. Nucleic Acids Res 2013; 41:5469-82; PMID:23563153; http://dx.doi.org/10.1093/nar/gkt208
  • Padalon-Brauch G, Hershberg R, Elgrably-Weiss M, Baruch K, Rosenshine I, Margalit H, Altuvia S. Small RNAs encoded within genetic islands of Salmonella typhimurium show host-induced expression and role in virulence. Nucleic Acids Res 2008; 36:1913-27; PMID:18267966; http://dx.doi.org/10.1093/nar/gkn050
  • Gong H, Vu GP, Bai Y, Chan E, Wu R, Yang E, Liu F, Lu S. A Salmonella small non-coding RNA facilitates bacterial invasion and intracellular replication by modulating the expression of virulence factors. PLoS Pathog 2011; 7:e1002120; PMID:21949647; http://dx.doi.org/10.1371/journal.ppat.1002120
  • Durand JM, Okada N, Tobe T, Watarai M, Fukuda I, Suzuki T, Nakata N, Komatsu K, Yoshikawa M, Sasakawa C. vacC, a virulence-associated chromosomal locus of Shigella flexneri, is homologous to tgt, a gene encoding tRNA-guanine transglycosylase (Tgt) of Escherichia coli K-12. J Bacteriol 1994; 176:4627-34; PMID:8045893
  • Shippy DC, Fadl AA. tRNA modification enzymes GidA and MnmE: potential role in virulence of bacterial pathogens. Int J Mol Sci 2014; 15:18267-80; PMID:25310651; http://dx.doi.org/10.3390/ijms151018267
  • Yu H, Kim KS. mRNA context dependent regulation of cytotoxic necrotizing factor 1 translation by GidA, a tRNA modification enzyme in Escherichia coli. Gene 2012; 491:116-22; PMID:22020226; http://dx.doi.org/10.1016/j.gene.2011.10.013
  • Knust Z, Blumenthal B, Aktories K, Schmidt G. Cleavage of Escherichia coli cytotoxic necrotizing factor 1 is required for full biologic activity. Infect Immun 2009; 77:1835-41; PMID:19237521; http://dx.doi.org/10.1128/IAI.01145-08
  • Lemonnier M, Landraud L, Lemichez E. Rho GTPase-activating bacterial toxins: from bacterial virulence regulation to eukaryotic cell biology. FEMS Microbiol Rev 2007; 31:515-34; PMID:17680807; http://dx.doi.org/10.1111/j.1574-6976.2007.00078.x
  • Cheng ZF, Zuo Y, Li Z, Rudd KE, Deutscher MP. The vacB gene required for virulence in Shigella flexneri and Escherichia coli encodes the exoribonuclease RNase R. J Biol Chem 1998; 273:14077-80; PMID:9603904; http://dx.doi.org/10.1074/jbc.273.23.14077
  • Clements MO, Eriksson S, Thompson A, Lucchini S, Hinton JC, Normark S, Rhen M. Polynucleotide phosphorylase is a global regulator of virulence and persistency in Salmonella enterica. Proc Natl Acad Sci U S A 2002; 99:8784-9; PMID:12072563; http://dx.doi.org/10.1073/pnas.132047099
  • Jones BD, Ghori N, Falkow S. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J Exp Med 1994; 180:15-23; PMID:8006579; http://dx.doi.org/10.1084/jem.180.1.15
  • Vazquez-Torres A, Jones-Carson J, Baumler AJ, Falkow S, Valdivia R, Brown W, Le M, Berggren R, Parks WT, Fang FC. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes [In Process Citation]. Nature 1999; 401:804-8; PMID:10548107; http://dx.doi.org/10.1038/44593
  • Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA, Holden DW. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 2014; 343:204-8; PMID:24408438; http://dx.doi.org/10.1126/science.1244705
  • Ortega A, Gonzalo-Asensio J, Garcia-Del Portillo F. Dynamics of Salmonella small RNA expression in non-growing bacteria located inside eukaryotic cells. RNA Biol 2012; 9:469-88; PMID:22336761; http://dx.doi.org/10.4161/rna.19317
  • Srikumar S, Kroger C, Hebrard M, Colgan A, Owen SV, Sivasankaran SK, Cameron AD, Hokamp K, Hinton JC. RNA-seq brings new insights to the intra-macrophage transcriptome of Salmonella Typhimurium. PLoS Pathog 2015; 11:e1005262; PMID:26561851; http://dx.doi.org/10.1371/journal.ppat.1005262
  • Westermann AJ, Forstner KU, Amman F, Barquist L, Chao Y, Schulte LN, Müller L, Reinhardt R, Stadler PF, Vogel J. Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions. Nature 2016; 529:496-501; PMID:26789254; http://dx.doi.org/10.1038/nature16547
  • Leclerc JM, Dozois CM, Daigle F. Role of the Salmonella enterica serovar Typhi Fur regulator and small RNAs RfrA and RfrB in iron homeostasis and interaction with host cells. Microbiology 2013; 159:591-602; PMID:23306672; http://dx.doi.org/10.1099/mic.0.064329-0
  • Pfeiffer V, Sittka A, Tomer R, Tedin K, Brinkmann V, Vogel J. A small non-coding RNA of the invasion gene island (SPI-1) represses outer membrane protein synthesis from the Salmonella core genome. Mol Microbiol 2007; 66:1174-91; PMID:17971080; http://dx.doi.org/10.1111/j.1365-2958.2007.05991.x
  • Chao Y, Papenfort K, Reinhardt R, Sharma CM, Vogel J. An atlas of Hfq-bound transcripts reveals 3′ UTRs as a genomic reservoir of regulatory small RNAs. EMBO J 2012; 31:4005-19; PMID:22922465; http://dx.doi.org/10.1038/emboj.2012.229
  • Prost LR, Miller SI. The Salmonellae PhoQ sensor: mechanisms of detection of phagosome signals. Cellular Microbiology 2008; 10:576-82; PMID:18182085; http://dx.doi.org/10.1111/j.1462-5822.2007.01111.x
  • Groisman EA. The pleiotropic two-component regulatory system PhoP-PhoQ. Journal of Bacteriology 2001; 183:1835-42; PMID:11222580; http://dx.doi.org/10.1128/JB.183.6.1835-1842.2001
  • Chaudhuri RR, Morgan E, Peters SE, Pleasance SJ, Hudson DL, Davies HM, Wang J, van Diemen PM, Buckley AM, Bowen AJ, et al. Comprehensive assignment of roles for Salmonella typhimurium genes in intestinal colonization of food-producing animals. PLoS Genet 2013; 9:e1003456; PMID:23637626; http://dx.doi.org/10.1371/journal.pgen.1003456
  • Chen ZW, Hsuan SL, Liao JW, Chen TH, Wu CM, Lee WC, Lin CC, Liao CM, Yeh KS, Winton JR, et al. Mutations in the Salmonella enterica serovar Choleraesuis cAMP-receptor protein gene lead to functional defects in the SPI-1 Type III secretion system. Vet Res 2010; 41:5; PMID:19775595; http://dx.doi.org/10.1051/vetres/2009053
  • Gonzalo-Asensio J, Ortega AD, Rico-Perez G, Pucciarelli MG, Garcia-Del Portillo F. A novel antisense RNA from the Salmonella virulence plasmid pSLT expressed by non-growing bacteria inside eukaryotic cells. PLoS One 2013; 8:e77939; PMID:24205037; http://dx.doi.org/10.1371/journal.pone.0077939
  • Gulig PA, Danbara H, Guiney DG, Lax AJ, Norel F, Rhen M. Molecular analysis of spv virulence genes of the Salmonella virulence plasmids. Mol Microbiol 1993; 7:825-30; PMID:8483415; http://dx.doi.org/10.1111/j.1365-2958.1993.tb01172.x
  • Libby SJ, Lesnick M, Hasegawa P, Weidenhammer E, Guiney DG. The Salmonella virulence plasmid spv genes are required for cytopathology in human monocyte-derived macrophages. Cell Microbiol 2000; 2:49-58; PMID:11207562; http://dx.doi.org/10.1046/j.1462-5822.2000.00030.x
  • Ygberg SE, Clements MO, Rytkonen A, Thompson A, Holden DW, Hinton JC, Rhen M. Polynucleotide phosphorylase negatively controls spv virulence gene expression in Salmonella enterica. Infect Immun 2006; 74:1243-54; PMID:16428774; http://dx.doi.org/10.1128/IAI.74.2.1243-1254.2006
  • Cornelis GR, Wolf-Watz H. The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol Microbiol 1997; 23:861-7; PMID:9076724; http://dx.doi.org/10.1046/j.1365-2958.1997.2731623.x
  • Shao F. Biochemical functions of Yersinia type III effectors. Curr Opin Microbiol 2008; 11:21-9; PMID:18299249; http://dx.doi.org/10.1016/j.mib.2008.01.005
  • Schiano CA, Lathem WW. Post-transcriptional regulation of gene expression in Yersinia species. Front Cell Infect Microbiol 2012; 2:129; PMID:23162797; http://dx.doi.org/10.3389/fcimb.2012.00129
  • Hoe NP, Goguen JD. Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated. J Bacteriol 1993; 175:7901-9; PMID:7504666
  • Böhme K, Steinmann R, Kortmann J, Seekircher S, Heroven AK, Berger E, Pisano F, Thiermann T, Wolf-Watz H, Narberhaus F, et al. Concerted actions of a thermo-labile regulator and a unique intergenic RNA thermosensor control Yersinia virulence. PLoS Pathog 2012; 8:e1002518; PMID:22359501; http://dx.doi.org/10.1371/journal.ppat.1002518
  • Anderson DM, Ramamurthi KS, Tam C, Schneewind O. YopD and LcrH regulate expression of Yersinia enterocolitica YopQ by a posttranscriptional mechanism and bind to yopQ RNA. J Bacteriol 2002; 184:1287-95; PMID:11844757; http://dx.doi.org/10.1128/JB.184.5.1287-1295.2002
  • Chen Y, Anderson DM. Expression hierarchy in the Yersinia type III secretion system established through YopD recognition of RNA. Mol Microbiol 2011; 80:966-80; PMID:21481017; http://dx.doi.org/10.1111/j.1365-2958.2011.07623.x
  • Cambronne ED, Schneewind O. Yersinia enterocolitica type III secretion: yscM1 and yscM2 regulate yop gene expression by a posttranscriptional mechanism that targets the 5′ untranslated region of yop mRNA. J Bacteriol 2002; 184:5880-93; PMID:12374821; http://dx.doi.org/10.1128/JB.184.21.5880-5893.2002
  • Kopaskie KS, Ligtenberg KG, Schneewind O. Translational regulation of Yersinia enterocolitica mRNA encoding a type III secretion substrate. J Biol Chem 2013; 288:35478-88; PMID:24158443; http://dx.doi.org/10.1074/jbc.M113.504811
  • Rosenzweig JA, Weltman G, Plano GV, Schesser K. Modulation of Yersinia type three secretion system by the S1 domain of polynucleotide phosphorylase. J Biol Chem 2005; 280:156-63; PMID:15509583; http://dx.doi.org/10.1074/jbc.M405662200
  • Rosenzweig JA, Chromy B, Echeverry A, Yang J, Adkins B, Plano GV, McCutchen-Maloney S, Schesser K. Polynucleotide phosphorylase independently controls virulence factor expression levels and export in Yersinia spp. FEMS Microbiol Lett 2007; 270:255-64; PMID:17391372; http://dx.doi.org/10.1111/j.1574-6968.2007.00689.x
  • Yang J, Jain C, Schesser K. RNase E regulates the Yersinia type 3 secretion systemros. J Bacteriol 2008; 190:3774-8; PMID:18359811; http://dx.doi.org/10.1128/JB.00147-08
  • Rosenzweig JA, Chopra AK. The exoribonuclease polynucleotide phosphorylase influences the virulence and stress responses of yersiniae and many other pathogens. Front Cell Infect Microbiol 2013; 3:81; PMID:24312901; http://dx.doi.org/10.3389/fcimb.2013.00081
  • Norris V, Menu-Bouaouiche L, Becu JM, Legendre R, Norman R, Rosenzweig JA. Hyperstructure interactions influence the virulence of the type 3 secretion system in yersiniae and other bacteria. Appl Microbiol Biotechnol 2012; 96:23-36; PMID:22949045; http://dx.doi.org/10.1007/s00253-012-4325-4
  • De Lay N, Gottesman S. Role of polynucleotide phosphorylase in sRNA function in Escherichia coli. RNA 2011; 17:1172-89; PMID:21527671; http://dx.doi.org/10.1261/rna.2531211
  • Beauregard A, Smith EA, Petrone BL, Singh N, Karch C, McDonough KA, Wade JT. Identification and characterization of small RNAs in Yersinia pestis. RNA Biol 2013; 10:397-405; PMID:23324607; http://dx.doi.org/10.4161/rna.23590
  • Mohanty BK, Maples VF, Kushner SR. The Sm-like protein Hfq regulates polyadenylation dependent mRNA decay in Escherichia coli. Mol Microbiol 2004; 54:905-20; PMID:15522076; http://dx.doi.org/10.1111/j.1365-2958.2004.04337.x
  • Schiano CA, Bellows LE, Lathem WW. The small RNA chaperone Hfq is required for the virulence of Yersinia pseudotuberculosis. Infect Immun 2010; 78:2034-44; PMID:20231416; http://dx.doi.org/10.1128/IAI.01046-09
  • Geng J, Song Y, Yang L, Feng Y, Qiu Y, Li G, Guo J, Bi Y, Qu Y, Wang W, et al. Involvement of the post-transcriptional regulator of Hfq in Yersinia pestis virulence. PLoS One 2009; 4:e6213; PMID:19593436; http://dx.doi.org/10.1371/journal.pone.0006213
  • Leskinen K, Varjosalo M, Skurnik M. Absence of YbeY RNase compromises the growth and enhances the virulence plasmid gene expression of Yersinia enterocolitica O:3. Microbiology 2015; 161:285-99; PMID:25416689; http://dx.doi.org/10.1099/mic.0.083097-0
  • Jacob AI, Kohrer C, Davies BW, RajBhandary UL, Walker GC. Conserved bacterial RNase YbeY plays key roles in 70S ribosome quality control and 16S rRNA maturation. Mol Cell 2013; 49:427-38; PMID:23273979; http://dx.doi.org/10.1016/j.molcel.2012.11.025
  • Grinwald M, Ron EZ. The Escherichia coli translation-associated heat shock protein YbeY is involved in rRNA transcription antitermination. PLoS One 2013; 8:e62297; PMID:23638028; http://dx.doi.org/10.1371/journal.pone.0062297
  • Pandey SP, Winkler JA, Li H, Camacho DM, Collins JJ, Walker GC. Central role for RNase YbeY in Hfq-dependent and Hfq-independent small-RNA regulation in bacteria. BMC Genomics 2014; 15:121; PMID:24511998; http://dx.doi.org/10.1186/1471-2164-15-121
  • Okan NA, Bliska JB, Karzai AW. A Role for the SmpB-SsrA system in Yersinia pseudotuberculosis pathogenesis. PLoS Pathog 2006; 2:e6; PMID:16450010; http://dx.doi.org/10.1371/journal.ppat.0020006
  • Karzai AW, Roche ED, Sauer RT. The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. Nat Struct Biol 2000; 7:449-55; PMID:10881189; http://dx.doi.org/10.1038/75843
  • Neubauer C, Gillet R, Kelley AC, Ramakrishnan V. Decoding in the absence of a codon by tmRNA and SmpB in the ribosome. Science 2012; 335:1366-9; PMID:22422985; http://dx.doi.org/10.1126/science.1217039
  • Schiano CA, Koo JT, Schipma MJ, Caulfield AJ, Jafari N, Lathem WW. Genome-wide analysis of small RNAs expressed by Yersinia pestis identifies a regulator of the Yop-Ysc type III secretion system. J Bacteriol 2014; 196:1659-70; PMID:24532772; http://dx.doi.org/10.1128/JB.01456-13
  • Oliva G, Sahr T, Buchrieser C. Small RNAs, 5′ UTR elements and RNA-binding proteins in intracellular bacteria: impact on metabolism and virulence. FEMS Microbiol Rev 2015; 39:331-49; PMID:26009640; http://dx.doi.org/10.1093/femsre/fuv022
  • Bobrovskyy M, Vanderpool CK, Richards GR. Small RNAs Regulate Primary and Secondary Metabolism in Gram-negative Bacteria. Microbiol Spectr 2015; 3; PMID:26185078; http:/dx.doi.org/10.1128/microbiolspec.MBP-0009-2014
  • Mika F, Hengge R. Small Regulatory RNAs in the Control of Motility and Biofilm Formation in E. coli and Salmonella. Int J Mol Sci 2013; 14:4560-79; PMID:23443158; http://dx.doi.org/10.3390/ijms14034560
  • Masse E, Gottesman S. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci U S A 2002; 99:4620-5; PMID:11917098; http://dx.doi.org/10.1073/pnas.032066599
  • Deng Z, Meng X, Su S, Liu Z, Ji X, Zhang Y, Zhao X, Wang X, Yang R, Han Y. Two sRNA RyhB homologs from Yersinia pestis biovar microtus expressed in vivo have differential Hfq-dependent stability. Res Microbiol 2012; 163:413-8; PMID:22659336; http://dx.doi.org/10.1016/j.resmic.2012.05.006
  • Murphy ER, Payne SM. RyhB, an iron-responsive small RNA molecule, regulates Shigella dysenteriae virulence. Infect Immun 2007; 75:3470-7; PMID:17438026; http://dx.doi.org/10.1128/IAI.00112-07
  • Africa LA, Murphy ER, Egan NR, Wigley AF, Wing HJ. The iron-responsive Fur/RyhB regulatory cascade modulates the Shigella outer membrane protease IcsP. Infect Immun 2011; 79:4543-9; PMID:21859852; http://dx.doi.org/10.1128/IAI.05340-11
  • Broach WH, Egan N, Wing HJ, Payne SM, Murphy ER. VirF-independent regulation of Shigella virB transcription is mediated by the small RNA RyhB. PLoS One 2012; 7:e38592; PMID:22701677; http://dx.doi.org/10.1371/journal.pone.0038592
  • Fris ME, Murphy ER. Riboregulators: Fine-Tuning Virulence in Shigella. Front Cell Infect Microbiol 2016; 6:2; PMID:26858941; http://dx.doi.org/10.3389/fcimb.2016.00002
  • Oglesby AG, Murphy ER, Iyer VR, Payne SM. Fur regulates acid resistance in Shigella flexneri via RyhB and ydeP. Mol Microbiol 2005; 58:1354-67; PMID:16313621; http://dx.doi.org/10.1111/j.1365-2958.2005.04920.x
  • Caswell CC, Oglesby-Sherrouse AG, Murphy ER. Sibling rivalry: related bacterial small RNAs and their redundant and non-redundant roles. Front Cell Infect Microbiol 2014; 4:151; PMID:25389522; http://dx.doi.org/10.3389/fcimb.2014.00151
  • Kim JN, Kwon YM. Identification of target transcripts regulated by small RNA RyhB homologs in Salmonella: RyhB-2 regulates motility phenotype. Microbiol Res 2013; 168:621-9; PMID:23831078; http://dx.doi.org/10.1016/j.micres.2013.06.002
  • Calderon PF, Morales EH, Acuna LG, Fuentes DN, Gil F, Porwollik S, McClelland M, Saavedra CP, Calderón IL. The small RNA RyhB homologs from Salmonella typhimurium participate in the response to S-nitrosoglutathione-induced stress. Biochem Biophys Res Commun 2014; 450:641-5; PMID:24937451; http://dx.doi.org/10.1016/j.bbrc.2014.06.031
  • Deng Z, Liu Z, Bi Y, Wang X, Zhou D, Yang R, Han Y. Rapid degradation of Hfq-free RyhB in Yersinia pestis by PNPase independent of putative ribonucleolytic complexes. Biomed Res Int 2014; 2014:798918; PMID:24818153; http://dx.doi.org/10.1155/2014/798918
  • Kouse AB, Righetti F, Kortmann J, Narberhaus F, Murphy ER. RNA-mediated thermoregulation of iron-acquisition genes in Shigella dysenteriae and pathogenic Escherichia coli. PLoS One 2013; 8:e63781; PMID:23704938; http://dx.doi.org/10.1371/journal.pone.0063781
  • Michaux C, Verneuil N, Hartke A, Giard JC. Physiological roles of small RNA molecules. Microbiology 2014; 160:1007-19; PMID:24694375; http://dx.doi.org/10.1099/mic.0.076208-0
  • Martinez-Chavarria LC, Vadyvaloo V. Yersinia pestis and Yersinia pseudotuberculosis infection: a regulatory RNA perspective. Front Microbiol 2015; 6:956; PMID:26441890; http://dx.doi.org/10.3389/fmicb.2015.00956
  • Lee YH, Kim S, Helmann JD, Kim BH, Park YK. RaoN, a small RNA encoded within Salmonella pathogenicity island-11, confers resistance to macrophage-induced stress. Microbiology 2013; 159:1366-78; PMID:23657681; http://dx.doi.org/10.1099/mic.0.066688-0
  • Tramonti A, De Canio M, De Biase D. GadX/GadW-dependent regulation of the Escherichia coli acid fitness island: transcriptional control at the gadY-gadW divergent promoters and identification of four novel 42 bp GadX/GadW-specific binding sites. Mol Microbiol 2008; 70:965-82; PMID:18808381; http://dx.doi.org/10.1111/j.1365-2958.2008.06458.x
  • Papenfort K, Vanderpool CK. Target activation by regulatory RNAs in bacteria. FEMS Microbiol Rev 2015; 39:362-78; PMID:25934124; http://dx.doi.org/10.1093/femsre/fuv016
  • Park SY, Cromie MJ, Lee EJ, Groisman EA. A bacterial mRNA leader that employs different mechanisms to sense disparate intracellular signals. Cell 2010; 142:737-48; PMID:20813261; http://dx.doi.org/10.1016/j.cell.2010.07.046
  • van Opijnen T, Camilli A. Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nat Rev Microbiol 2013; 11:435-42; PMID:23712350; http://dx.doi.org/10.1038/nrmicro3033
  • Diard M, Garcia V, Maier L, Remus-Emsermann MN, Regoes RR, Ackermann M, Hardt WD. Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature 2013; 494:353-6; PMID:23426324; http://dx.doi.org/10.1038/nature11913
  • Claudi B, Sprote P, Chirkova A, Personnic N, Zankl J, Schurmann N, Schmidt A, Bumann D. Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell 2014; 158:722-33; PMID:25126781; http://dx.doi.org/10.1016/j.cell.2014.06.045
  • avis KM, Mohammadi S, Isberg RR. Community behavior and spatial regulation within a bacterial microcolony in deep tissue sites serves to protect against host attack. Cell Host Microbe 2015; 17:21-31; PMID:25500192; http://dx.doi.org/10.1016/j.chom.2014.11.008
  • Burgess DJ. RNA. Detailed probing of RNA structure in vivo. Nat Rev Genet 2015; 16:255; PMID:25854184; http://dx.doi.org/10.1038/nrg3939
  • Lee CH, Han SR, Lee SW. Therapeutic applications of aptamer-based riboswitches. Nucleic Acid Ther 2016; 26:44-51; PMID:26539634; http://dx.doi.org/10.1089/nat.2015.0570
  • Blount KF, Breaker RR. Riboswitches as antibacterial drug targets. Nat Biotechnol 2006; 24:1558-64; PMID:17160062; http://dx.doi.org/10.1038/nbt1268
  • Howe JA, Wang H, Fischmann TO, Balibar CJ, Xiao L, Galgoci AM, Malinverni JC, Mayhood T, Villafania A, Nahvi A, et al. Selective small-molecule inhibition of an RNA structural element. Nature 2015; 526:672-7; PMID:26416753; http://dx.doi.org/10.1038/nature15542

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.