4,500
Views
23
CrossRef citations to date
0
Altmetric
Review

The notorious R.N.A. in the spotlight - drug or target for the treatment of disease

, &
Pages 651-668 | Received 08 Apr 2016, Accepted 27 Jun 2016, Published online: 17 Aug 2016

References

  • Klungland A, Dahl JA. Dynamic RNA modifications in disease. Curr Opin Genet Dev 2014; 26:47-52; PMID:25005745; http://dx.doi.org/10.1016/j.gde.2014.05.006
  • Schoenberg DR, Maquat LE. Regulation of cytoplasmic mRNA decay. Nat Rev Genet 2012; 13:246-59; PMID:22392217; http://dx.doi.org/10.1038/nrg3254
  • Chabot B, Shkreta L. Defective control of pre-messenger RNA splicing in human disease. J Cell Biol 2016; 212:13-27; PMID:26728853; http://dx.doi.org/10.1083/jcb.201510032
  • Scheper GC, van der Knaap MS, Proud CG. Translation matters: protein synthesis defects in inherited disease. Nat Rev Genet 2007; 8:711-23; PMID:17680008; http://dx.doi.org/10.1038/nrg2142
  • Nalavade R, Griesche N, Ryan DP, Hildebrand S, Krauss S. Mechanisms of RNA-induced toxicity in CAG repeat disorders. Cell Death Dis 2013; 4:e752; PMID:23907466; http://dx.doi.org/10.1038/cddis.2013.276
  • Bennett CF, Swayze EE. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 2010; 50:259-93; PMID:20055705; http://dx.doi.org/10.1146/annurev.pharmtox.010909.105654
  • Kole R, Krainer AR, Altman S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 2012; 11:125-40; PMID:22262036; http:dx.doi.org/10.1038/nrd3625
  • Geary RS. Antisense oligonucleotide pharmacokinetics and metabolism. Expert Opin Drug Metab Toxicol 2009; 5:381-91; PMID:19379126; http://dx.doi.org/10.1517/17425250902877680
  • Cox DB, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med 2015; 21:121-31; PMID:25654603; http://dx.doi.org/10.1038/nm.3793
  • Myra Stern and Eric WFW Alton. Use of Liposomes in the Treatment of Cystic Fibrosis. Gene Therapy in Lung Disease CRC Press, 2002; 383–396; http://dx.doi.org/10.3109/9780203908822-18
  • Sehgal A, Barros S, Ivanciu L, Cooley B, Qin J, Racie T, Hettinger J, Carioto M, Jiang Y, Brodsky J, et al. An RNAi therapeutic targeting antithrombin to rebalance the coagulation system and promote hemostasis in hemophilia. Nat Med 2015; 21:492-7; PMID:25849132; http://dx.doi.org/10.1038/nm.3847
  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391:806-11; PMID:9486653; http://dx.doi.org/10.1038/35888
  • Wu H, Lima WF, Zhang H, Fan A, Sun H, Crooke ST. Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs. J Biol Chem 2004; 279:17181-9; PMID:14960586; http://dx.doi.org/10.1074/jbc.M311683200
  • Vitravene Study Group. A randomized controlled clinical trial of intravitreous fomivirsen for treatment of newly diagnosed peripheral cytomegalovirus retinitis in patients with AIDS. Am J Ophthalmol 2002; 133:467-74; PMID:11931780; http://dx.doi.org/10.1016/S0002-9394(02)01327-2
  • Vitravene Study Group. Randomized dose-comparison studies of intravitreous fomivirsen for treatment of cytomegalovirus retinitis that has reactivated or is persistently active despite other therapies in patients with AIDS. Am J Ophthalmol 2002; 133:475-83; PMID:11931781; http://dx.doi.org/10.1016/S0002-9394(02)01326-0
  • Vitravene Study Group. Safety of intravitreous fomivirsen for treatment of cytomegalovirus retinitis in patients with AIDS. Am J Ophthalmol 2002; 133:484-98; PMID:11931782; http://dx.doi.org/10.1016/S0002-9394(02)01332-6
  • Greuter T, Biedermann L, Rogler G, Sauter B, Seibold F. Alicaforsen, an antisense inhibitor of ICAM-1, as treatment for chronic refractory pouchitis after proctocolectomy: A case series. United European Gastroenterol J 2016; 4:97-104; PMID:26966529; http://dx.doi.org/10.1177/2050640615593681
  • Randomized Study of Topical Alicaforsen Enema in Antibiotic Refractory Pouchitis. (2015). Clinical Phase Trial III
  • Cloutier F, Lawrence M, Goody R, Lamoureux S, Al-Mahmood S, Colin S, Ferry A, Conduzorgues JP, Hadri A, Cursiefen C, et al. Antiangiogenic activity of aganirsen in nonhuman primate and rodent models of retinal neovascular disease after topical administration. Invest Ophthalmol Vis Sci 2012; 53:1195-203; PMID:22323484; http://dx.doi.org/10.1167/iovs.11-9064
  • Cursiefen C, Viaud E, Bock F, Geudelin B, Ferry A, Kadlecová P, Lévy M, Al Mahmood S, Colin S, Thorin E, et al. Aganirsen antisense oligonucleotide eye drops inhibit keratitis-induced corneal neovascularization and reduce need for transplantation: the I-CAN study. Ophthalmology 2014; 121:1683-92; PMID:24811963; http://dx.doi.org/10.1016/j.ophtha.2014.03.038
  • A multicentre double-blind randomized study to investigate the efficacy and tolerability of GS-101 eye drops, an antisense oligonucleotide, versus placebo on inhibition of corneal neovascularization, a major risk factor of corneal graft rejection: The I-GRAFT study. (2009). Clinical Trial Phase III
  • The STRONG Study. (http://strong-nvg.com/the-study/). Clinical Trial Phase II/III
  • Yoon H, Kim DJ, Ahn EH, Gellert GC, Shay JW, Ahn CH, Lee YB. Antitumor activity of a novel antisense oligonucleotide against Akt1. J Cell Biochem 2009; 108:832-8; PMID:19693774; http://dx.doi.org/10.1002/jcb.22311
  • A Safety and Efficacy Study of RX-0201 Plus Gemcitabine in Metastatic Pancreatic Cancer. (2009). Clinical Trial Phase II
  • Dose-Finding, Safety and Efficacy Study of RX-0201 Plus Everolimus in Metastatic Renal Cell Cancer. (2014). Clinical Trial Phase IB/II
  • Tagawa ST, Chatta GS, Mazhari R, Benaim E. Archexin, a novel AKT-1-specific inhibitor for the treatment of metastatic renal cancer: Preliminary phase I data. ASCO Annual Meeting Proceedings 2016; (suppl 2S; abstr 550);
  • MacLeod AR. Antisense therapies for cancer: bridging the pharmacogenomic divide. Drug Discovery Today: Therapeutic Strategies 2013; 10:e157-e63
  • Teplova M, Minasov G, Tereshko V, Inamati GB, Cook PD, Manoharan M, Egli M. Crystal structure and improved antisense properties of 2′-O-(2-methoxyethyl)-RNA. Nat Struct Mol Biol 1999; 6:535-9; PMID:10360355; http://dx.doi.org/10.1038/9304.
  • Raal FJ, Santos RD, Blom DJ, Marais AD, Charng M-J, Cromwell WC, Lachmann RH, Gaudet D, Tan JL, Chasan-Taber S, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. The Lancet 2010; 375:998-1006; http://dx.doi.org/10.1016/S0140-6736(10)60284-X
  • Stein EA, Dufour R, Gagne C, Gaudet D, East C, Donovan JM, Chin W, Tribble DL, McGowan M. Apolipoprotein B synthesis inhibition with mipomersen in heterozygous familial hypercholesterolemia: results of a randomized, double-blind, placebo controlled trial to assess efficacy and safety as add-on therapy in patients with coronary artery disease. Circulation 2012; 126:2283-92; PMID:23060426; http://dx.doi.org/10.1161/CIRCULATIONAHA.112.104125
  • Santos RD, Duell PB, East C, Guyton JR, Moriarty PM, Chin W, Mittleman RS. Long-term efficacy and safety of mipomersen in patients with familial hypercholesterolaemia: 2-year interim results of an open-label extension. Eur Heart J 2015; 36:566-75; PMID:24366918; http://dx.doi.org/10.1093/eurheartj/eht549
  • Ackermann EJ, Guo S, Booten S, Alvarado L, Benson M, Hughes S, Monia BP. Clinical development of an antisense therapy for the treatment of transthyretin-associated polyneuropathy. Amyloid 2012; 19:43-4; PMID:22494066; http://dx.doi.org/10.3109/13506129.2012.673140
  • Efficacy and Safety of IONIS-TTR Rx in Familial Amyloid Polyneuropathy. (2012). Clinical Phase trial II/III
  • Open-Label Extension Assessing Long Term Safety and Efficacy of IONIS-TTR Rx in Familial Amyloid Polyneuropathy (FAP). (2012). Clinical Phase Trial III
  • Ionis Pharmaceuticals Press Release. (http://ir.isispharm.com/phoenix.zhtml?c=222170&p=irol-newsArticle&ID2105651). 2015
  • Comparison of Docetaxel/Prednisone to Docetaxel/Prednisone in Combination With OGX-011 in Men With Prostate Cancer (SYNERGY). (2010). Clinical Trial Phase III
  • Comparison of Cabazitaxel/Prednisone Alone or in Combination With Custirsen for 2nd Line Chemotherapy in Prostate Cancer (AFFINITY). (2012). Clinical Trial Phase III
  • OncoGenex Press Release. (http://ir.oncogenex.com/releasedetail.cfm?ReleaseID=933276). 2015
  • Laskin JJ, Nicholas G, Lee C, Gitlitz B, Vincent M, Cormier Y, Stephenson J, Ung Y, Sanborn R, Pressnail B, et al. Phase I/II trial of custirsen (OGX-011), an inhibitor of clusterin, in combination with a gemcitabine and platinum regimen in patients with previously untreated advanced non-small cell lung cancer. J Thorac Oncol 2012; 7:579-86; PMID:22198426; http://dx.doi.org/10.1097/JTO.0b013e31823f459c
  • A Multinational, Randomized, Open-Label Study of Custirsen In Patients With Advanced or Metastatic (Stage IV) Non-Small Cell Lung Cancer. (2012). Clinical Trial Phase III
  • Seth PP, Vasquez G, Allerson CA, Berdeja A, Gaus H, Kinberger GA, Prakash TP, Migawa MT, Bhat B, Swayze EE. Synthesis and biophysical evaluation of 2′, 4′-constrained 2′ O-methoxyethyl and 2′, 4′-constrained 2′ O-ethyl nucleic acid analogues. J Org Chem 2010; 75:1569-81; PMID:20136157; http://dx.doi.org/10.1021/jo902560f
  • Hong D, Kurzrock R, Kim Y, Woessner R, Younes A, Nemunaitis J, Fowler N, Zhou T, Schmidt J, Jo M, et al. AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci Translat Med 2015; 7:314ra185-314ra185; http://dx.doi.org/10.1126/scitranslmed.aac5272
  • AZD9150, a STAT3 Antisense Oligonucleotide, in People With Malignant Ascites. (2015). Clinical Trial Phase II
  • Study to Assess MEDI4736 With Either AZD9150 or AZD5069 in Relapsed Metastatic Squamous Cell Carcinoma of Head & Neck. (2015). Clinical Trial Phase IB/II
  • Phase 1/2, Open-label, Dose-escalation Study of IONIS-STAT3Rx, Administered to Patients With Advanced Cancers. (2012). Clinical Trial Phase I/II
  • MEDI4736 Alone and in Combination With Tremelimumab or AZD9150 in Adult Subjects With Diffuse Large B-cell Lymphoma (D4190C00023). (2015). Clinical Trial Phase IB
  • Prakash PT, Seth PP, Swayze EE, Graham MJ. Compositions and methods for modulating apolipoprotein (a) expression (US. Patent No. Nine,181,550). 2015
  • Nair JK, Willoughby JL, Chan A, Charisse K, Alam MR, Wang Q, Hoekstra M, Kandasamy P, Kel'in AV, Milstein S, et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc 2014; 136:16958-61; PMID:25434769; http://dx.doi.org/10.1021/ja505986a
  • Prakash TP, Graham MJ, Yu J, Carty R, Low A, Chappell A, Schmidt K, Zhao C, Aghajan M, Murray HF, et al. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res 2014; 42:8796-807; PMID:24992960; http://dx.doi.org/10.1093/nar/gku531
  • Ionis Pharmaceuticals Press Release. (http://ir.isispharm.com/phoenix.zhtml?c=222170&p=irol-newsArticle&ID=2110180) 2015
  • Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of IONIS APO(a)-LRx in Healthy Volunteers With Elevated Lipoprotein(a). (2015). Clinical Trial Phase I
  • Hoffman EP, Brown RH, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 1987; 51:919-28; PMID:3319190; http://dx.doi.org/10.1016/0092-8674(87)90579-4
  • Aartsma‐Rus A, Fokkema I, Verschuuren J, Ginjaar I, van Deutekom J, van Ommen GJ, den Dunnen JT. Theoretic applicability of antisense‐mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 2009; 30:293-9; PMID:19156838; http://dx.doi.org/10.1002/humu.20918
  • Koenig M, Beggs A, Moyer M, Scherpf S, Heindrich K, Bettecken T, Meng G, Müller CR, Lindlöf M, Kaariainen H, et al. The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet 1989; 45:498; PMID:2491009
  • Voit T, Topaloglu H, Straub V, Muntoni F, Deconinck N, Campion G, De Kimpe SJ, Eagle M, Guglieri M, Hood S, et al. Safety and efficacy of drisapersen for the treatment of Duchenne muscular dystrophy (DEMAND II): an exploratory, randomised, placebo-controlled phase 2 study. Lancet Neurol 2014; 13:987-96; PMID:25209738; http://dx.doi.org/10.1016/S1474-4422(14)70195-4
  • A Study of the Safety, Tolerability & Efficacy of Long-term Administration of Drisapersen in US & Canadian Subjects. (2013). Clinical Trial Phase III
  • Extension Study of Drisapersen in DMD Subjects. (2015). Clinical Trial Phase IIIB
  • Mendell JR, Rodino‐Klapac LR, Sahenk Z, Roush K, Bird L, Lowes LP, Alfano L, Gomez AM, Lewis S, Kota J, et al. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann Neurol 2013; 74:637-47; PMID:23907995; http://dx.doi.org/10.1002/ana.23982
  • Confirmatory Study of Eteplirsen in DMD Patients (PROMOVI). (2014). Clinical Trial Phase III
  • Drisapersen FDA Report. (http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/PeripheralandCentralNervousSystemDrugsAdvisoryCommittee/UCM473737.pdf). 2015
  • Komaki H, Nagata T, Saito T, Masuda S, Takeshita E, Tachimori H, et al. GP 251-Exon 53 skipping of the dystrophin gene in patients with Duchenne muscular dystrophy by systemic administration of NS-065/NCNP-01: A phase 1, dose escalation, first-in-human study. Neuromuscular Disorders 2015; 25:S261-S2; http://dx.doi.org/10.1016/j.nmd.2015.06.276
  • Nippon Shinyaku Press Release. (https://www.nippon-shinyaku.co.jp/english/news/?id=2920). 2016
  • Koizumi M. 2′-O, 4′-C-Ethylene-bridged nucleic acids (ENA) as next-generation antisense and antigene agents. Biol Pharm Bull 2004; 27:453-6; PMID:15056846; http://dx.doi.org/10.1248/bpb.27.453
  • Daiichi Sankyo Press Release. (http://www.daiichisankyo.com/media_investors/media_relations/press_releases/detail/006412/160225_635_E.pdf). 2016
  • Study of DS-5141b in Patients With Duchenne Muscular Dystrophy. (2016). Clinical Trial Phase I/II
  • Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995; 80:155-65; PMID:7813012; http://dx.doi.org/10.1016/0092-8674(95)90460-3
  • Lorson CL, Hahnen E, Androphy EJ, Wirth B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A 1999; 96:6307-11; PMID:103395583; http://dx.doi.org/10.1073/pnas.96.11.6307
  • Hua Y, Vickers TA, Okunola HL, Bennett CF, Krainer AR. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am J Hum Genet 2008; 82:834-48; PMID:18371932; http://dx.doi.org/10.1016/j.ajhg.2008.01.014
  • Ionis Pharmaceuticals. (http://ir.ionispharma.com/phoenix.zhtml?c=222170&p=irol-newsArticle&ID=2097778). 2015
  • A Study to Assess the Efficacy and Safety of IONIS-SMN Rx in Infants With Spinal Muscular Atrophy. (2014). Clinical Trial Phase III
  • A Study to Assess the Efficacy and Safety of IONIS-SMN Rx in Patients With Later-onset Spinal Muscular Atrophy. (2014). Clinical Phase Trial III
  • Disterer P, Kryczka A, Liu Y, Badi YE, Wong JJ, Owen JS, Khoo B. Development of therapeutic splice-switching oligonucleotides. Hum Gene Ther 2014; 25:587-98; PMID:24826963; http://dx.doi.org/10.1089/hum.2013.234
  • Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug Discov 2010; 9:537-50; PMID:20592747; http://dx.doi.org/10.1038/nrd3141
  • Bouchard PR, Hutabarat RM, Thompson KM. Discovery and Development of Therapeutic Aptamers. Annu Rev Pharmacol Toxicol 2010; 50:237-57; PMID:20055704; http://dx.doi.org/10.1146/annurev.pharmtox.010909.105547
  • Ruckman J, Green LS, Beeson J, Waugh S, Gillette WL, Henninger DD, Claesson-Welsh L, Janjić N. 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem 1998; 273:20556-67; PMID:9685413; http://dx.doi.org/10.1074/jbc.273.32.20556
  • Ng EWM, Shima DT, Calias P, Cunningham ET, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 2006; 5:123-32; PMID:16518379; http://dx.doi.org/10.1038/nrd1955
  • Lincoff AM, Mehran R, Povsic TJ, Zelenkofske SL, Huang Z, Armstrong PW, Steg PG, Bode C, Cohen MG, Buller C, et al. Effect of the REG1 anticoagulation system versus bivalirudin on outcomes after percutaneous coronary intervention (REGULATE-PCI): a randomised clinical trial. Lancet 2016; 387:349-56; PMID:26547100; http://dx.doi.org/10.1016/S0140-6736(15)00515-2
  • A Study To Determine the Efficacy and Safety of REG1 Compared to Bivalirudin in Patients Undergoing PCI (Regulate). (2013). Clinical Trial Phase III (Terminated)
  • Dugel PU. Anti-PDGF combination therapy in neovascular age-related macular degeneration: results of a phase 2b study. Retina Today 2013; 8:65-71
  • A Phase 3 Safety and Efficacy Study of Fovista® (E10030) Intravitreous Administration in Combination With Lucentis® Compared to Lucentis® Monotherapy. (2013). Clinical Trial Phase III
  • A Phase 3 Safety and Efficacy Study of Fovista® (E10030) Intravitreous Administration in Combination With Either Avastin® or Eylea® Compared to Avastin® or Eylea® Monotherapy. (2013). Clinical Trial Phase III
  • Monés J. Complement factor 5 inhibition in age-related macular degeneration. Retina Today 2010; 5:52-5
  • A Phase 2/3 Trial to Assess the Safety and Efficacy of Intravitreous Administration of Zimura® (Anti-C5 Aptamer) in Subjects With Geographic Atrophy Secondary to Dry Age-Related Macular Degeneration. (2016). Clinical Trial Phase II/III
  • Vater A, Klussmann S. Turning mirror-image oligonucleotides into drugs: the evolution of Spiegelmer® therapeutics. Drug Discovery Today 2015; 20:147-55; PMID:25236655; http://dx.doi.org/10.1016/j.drudis.2014.09.004
  • Ashley GW. Modeling, synthesis, and hybridization properties of (L)-ribonucleic acid. J Am Chem Soc 1992; 114:9731-6; http://dx.doi.org/10.1021/ja00051a001
  • van Eijk LT, John AS, Schwoebel F, Summo L, Vauléon S, Zöllner S, Laarakkers CM, Kox M, van der Hoeven JG, Swinkels DW, et al. Effect of the antihepcidin Spiegelmer lexaptepid on inflammation-induced decrease in serum iron in humans. Blood 2014; 124:2643-6; PMID:25163699; http://dx.doi.org/10.1182/blood-2014-03-559484
  • Roccaro AM, Sacco A, Purschke WG, Moschetta M, Buchner K, Maasch C, Zboralski D, Zöllner S, Vonhoff S, Mishima Y, et al. SDF-1 inhibition targets the bone marrow niche for cancer therapy. Cell Rep 2014; 9:118-28; PMID:25263552; http://dx.doi.org/10.1016/j.celrep.2014.08.042
  • NOX-A12 in Combination With Bortezomib and Dexamethasone in Relapsed Multiple Myeloma. (2012). Clinical Trial Phase IIA
  • NOX-A12 in Combination With Bendamustine and Rituximab in Relapsed Chronic Lymphocytic Leukemia (CLL). (2011). Clinical Trial Phase IIA
  • Oberthür D, Achenbach J, Gabdulkhakov A, Buchner K, Maasch C, Falke S, Rehders D, Klussmann S, Betzel C. Crystal structure of a mirror-image L-RNA aptamer (Spiegelmer) in complex with the natural L-protein target CCL2. Nat Commun 2015; 6:6923; PMID:25901662; http://dx.doi.org/10.1038/ncomms7923
  • NOX-E36 in Patients With Type 2 Diabetes Mellitus and Albuminuria. (2012). Clinical Trial Phase IIA
  • Efficacy of NOX-H94 on Anemia of Chronic Disease in Patients With Cancer. (2012). Clinical Trial Phase IIA
  • MacRae IJ, Ma E, Zhou M, Robinson CV, Doudna JA. In vitro reconstitution of the human RISC-loading complex. Proc Natl Acad Sci U S A 2008; 105:512-7; PMID:18178619; http://dx.doi.org/10.1073/pnas.0710869105
  • Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M. Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation. Int J Genomics 2014; 2014:970607; PMID:25180174
  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411:494-8; PMID:11373684; http://dx.doi.org/10.1038/35078107
  • Mellitzer G, Hallonet M, Chen L, Ang SL. Spatial and temporal ‘knock down’ of gene expression by electroporation of double-stranded RNA and morpholinos into early postimplantation mouse embryos. Mech Dev 2002; 118:57-63; PMID:12351170; http://dx.doi.org/10.1016/S0925-4773(02)00191-0
  • Calegari F, Haubensak W, Yang D, Huttner WB, Buchholz F. Tissue-specific RNA interference in postimplantation mouse embryos with endoribonuclease-prepared short interfering RNA. Proc Natl Acad Sci U S A 2002; 99:14236-40; PMID:12391321; http://dx.doi.org/10.1073/pnas.192559699
  • Zeliadt N. Big pharma shows signs of renewed interest in RNAi drugs. Nat Med 2014; 20:109; PMID:24504395; http://dx.doi.org/10.1038/nm0214-109
  • Open Label Study for the Evaluation of Tolerability of Five Dose Levels of Cand5. (2004). Clinical Trial Phase I
  • A Dose Escalation and Safety Study of I5NP to Prevent Acute Kidney Injury (AKI) in Patients at High Risk of AKI Undergoing Major Cardiovascular Surgery (QRK.004). (2008). Clinical Trial Phase I (Terminated)
  • Safety & Efficacy Study Evaluating the Combination of Bevasiranib & Lucentis Therapy in Wet AMD (COBALT). (2007). Clinical Trial Phase III (Terminated)
  • Study Evaluating Efficacy and Safety of PF-04523655 Versus Laser in Subjects With Diabetic Macular Edema (DEGAS). (2008). Clinical Trial Phase II (Terminated)
  • Study to Evaluate the Safety, Tolerability, Pharmacokinetics (PK), and Pharmacodynamics (PD) of Liposomal siRNA in Subjects With High Cholesterol. (2009). Clinical Trial Phase I (Terminated)
  • A Study Using Intravitreal Injections of a Small Interfering RNA in Patients With Age-Related Macular Degeneration. (2006). Clinical Trial Phase II (Terminated)
  • Conde J, Artzi N. Are RNAi and miRNA therapeutics truly dead? Trends Biotechnol 2015; 33:141-4; PMID:25595555; http://dx.doi.org/10.1016/j.tibtech.2014.12.005
  • Krieg AM. Is RNAi dead? Mol Ther 2011; 19:1001-2; PMID:21629254; http://dx.doi.org/10.1038/mt.2011.94
  • Coelho T, Adams D, Silva A, Lozeron P, Hawkins PN, Mant T, Perez J, Chiesa J, Warrington S, Tranter E, et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med 2013; 369:819-29; PMID:23984729; http://dx.doi.org/10.1056/NEJMoa1208760
  • Fitzgerald K, Frank-Kamenetsky M, Shulga-Morskaya S, Liebow A, Bettencourt BR, Sutherland JE, Hutabarat RM, Clausen VA, Karsten V, Cehelsky J, et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet 2014; 383:60-8; PMID:24094767; http://dx.doi.org/10.1016/S0140-6736(13)61914-5
  • van de Water FM, Boerman OC, Wouterse AC, Peters JG, Russel FG, Masereeuw R. Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules. Drug Metab Dispos 2006; 34:1393-7; PMID:16714375; http://dx.doi.org/10.1124/dmd.106.009555
  • Alagia A, Eritja R. siRNA and RNAi optimization. Wiley interdisciplinary reviews RNA, 2016 7; 316-329; PMID:26840434; http://dx.doi.org/10.1002/wrna.1337
  • Lorenzer C, Dirin M, Winkler AM, Baumann V, Winkler J. Going beyond the liver: progress and challenges of targeted delivery of siRNA therapeutics. J Control Release 2015; 203:1-15; PMID:25660205; http://dx.doi.org/10.1016/j.jconrel.2015.02.003
  • Jeong EH, Kim H, Jang B, Cho H, Ryu J, Kim B, Park Y, Kim J, Lee JB, Lee H. Technological development of structural DNA/RNA-based RNAi systems and their applications. Adv Drug Deliv Rev 2016; 107:29-43; PMID:26494399; http://dx.doi.org/10.1016/j.addr.2015.10.008
  • Bramsen JB, Kjems J. Engineering small interfering RNAs by strategic chemical modification. Methods Mol Biol 2013; 942:87-109; PMID:23027047; http://dx.doi.org/10.1007/978-1-62703-119-6_5
  • Phase 1b/2, Open Label, Repeat Dose, Dose Escalation Study of ND-L02-s0201 Injection in Subjects With Moderate to Extensive Fibrosis (METAVIR F3-4). (2014). Clinical Trial Phase I
  • Study of ARB-001467 in Subjects With Chronic HBV Infection Receiving Nucleos(t)Ide Analogue Therapy. (2015). Clinical Trial Phase II
  • A Phase 1 Study of ALN-AS1 in Patients With Acute Intermittent Porphyria (AIP). (2015). Clinical Trial Phase I
  • ENDEAVOUR: Phase 3 Multicenter Study of Revusiran (ALN-TTRSC) in Patients With Transthyretin (TTR) Mediated Familial Amyloidotic Cardiomyopathy (FAC). (2014). Clinical Trial Phase III
  • A Phase 1 Study of an Investigational Drug, ALN-AT3SC, in Healthy Volunteers and Hemophilia A or B Patients. (2014). Clinical Trial Phase I
  • Phase I Intratumoral Pbi-shRNA STMN1 LP in Advanced and/or Metastatic Cancer (STMN1-LP). (2012). Clinical Trial Phase I
  • APN401 in Treating Patients With Melanoma, Kidney Cancer, Pancreatic Cancer, or Other Solid Tumors That Are Metastatic or Cannot Be Removed By Surgery. (2014). Clinical Trial Phase I
  • SYL040012, Treatment for Open Angle Glaucoma (SYLTAG). (2014). Clinical Trial Phase II
  • Phase 2/3, Randomized, Double-Masked, Sham-Controlled Trial of QPI-1007 in Subjects With Acute Nonarteritic Anterior Ischemic Optic Neuropathy (NAION). (2015). Clinical Trial Phase II/III
  • Bobbin ML, Rossi JJ. RNA Interference (RNAi)-Based Therapeutics: Delivering on the Promise? Annu Rev Pharmacol Toxicol 2016; 56:103-22; PMID:26738473; http://dx.doi.org/10.1146/annurev-pharmtox-010715-103633
  • Lam JK, Chow MY, Zhang Y, Leung SW. siRNA Versus miRNA as Therapeutics for Gene Silencing. Mol Ther Nucleic Acids 2015; 4:e252; PMID:26372022; http://dx.doi.org/10.1038/mtna.2015.23
  • Long-term Extension to Miravirsen Study in Null Responder to Pegylated Interferon Alpha Plus Ribavirin Subjects With Chronic Hepatitis C. (2014). Clinical Trial Phase II
  • Lee CH, Kim JH, Lee SW. The role of microRNAs in hepatitis C virus replication and related liver diseases. J Microbiol 2014; 52:445-51; PMID:24871972; http://dx.doi.org/10.1007/s12275-014-4267-x
  • MesomiR 1: A Phase I Study of TargomiRs as 2nd or 3rd Line Treatment for Patients With Recurrent MPM and NSCLC. (2015). Clinical Trial Phase I
  • A Multicenter Phase I Study of MRX34, MicroRNA miR-RX34 Liposomal Injection. (2013). Clinical Trial Phase I
  • Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL. Direct gene transfer into mouse muscle in vivo. Science 1990; 247:1465-8; PMID:1690918; http://dx.doi.org/10.1126/science.1690918
  • Jirikowski GF, Sanna PP, Maciejewski-Lenoir D, Bloom FE. Reversal of diabetes insipidus in Brattleboro rats: intrahypothalamic injection of vasopressin mRNA. Science 1992; 255:996-8; PMID:1546298; http://dx.doi.org/10.1126/science.1546298
  • Isaacs A, Cox RA, Rotem Z. Foreign nucleic acids as the stimulus to make interferon. Lancet 1963; 2:113-6; PMID:13956740; http://dx.doi.org/10.1016/S0140-6736(63)92585-6
  • Weissman D. mRNA transcript therapy. Expert Rev Vaccines 2015; 14:265-81; PMID:25359562; http://dx.doi.org/10.1586/14760584.2015.973859
  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001; 413:732-8; PMID:11607032; http://dx.doi.org/10.1038/35099560
  • Anderson BR, Muramatsu H, Nallagatla SR, Bevilacqua PC, Sansing LH, Weissman D, Karikó K. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res 2010; 38:5884-92; PMID:20457754; http://dx.doi.org/10.1093/nar/gkq347
  • Kariko K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, Weissman D. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther 2008; 16:1833-40; PMID:18797453; http://dx.doi.org/10.1038/mt.2008.200
  • Goubau D, Deddouche S, Reis e Sousa C. Cytosolic sensing of viruses. Immunity 2013; 38:855-69; PMID:23706667; http://dx.doi.org/10.1016/j.immuni.2013.05.007
  • Kariko K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 2005; 23:165-75; PMID:16111635; http://dx.doi.org/10.1016/j.immuni.2005.06.008
  • Kormann MS, Hasenpusch G, Aneja MK, Nica G, Flemmer AW, Herber-Jonat S, Huppmann M, Mays LE, Illenyi M, Schams A, et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol 2011; 29:154-7; PMID:21217696; http://dx.doi.org/10.1038/nbt.1733
  • Karijolich J, Yu YT. Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 2011; 474:395-8; PMID:21677757; http://dx.doi.org/10.1038/nature10165
  • Summer H, Gramer R, Droge P. Denaturing urea polyacrylamide gel electrophoresis (Urea PAGE). J Vis Exp 2009; PMID:19865070; http://dx.doi.org/10.3791/1485(2009)
  • Kariko K, Muramatsu H, Ludwig J, Weissman D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res 2011; 39:e142; PMID:21890902; http://dx.doi.org/10.1093/nar/gkr695
  • Pasquinelli AE, Dahlberg JE, Lund E. Reverse 5' caps in RNAs made in vitro by phage RNA polymerases. RNA 1995; 1:957-67; PMID:8548660
  • Stepinski J, Waddell C, Stolarski R, Darzynkiewicz E, Rhoads RE. Synthesis and properties of mRNAs containing the novel “anti-reverse” cap analogs 7-methyl(3'-O-methyl)GpppG and 7-methyl (3'-deoxy)GpppG. RNA 2001; 7:1486-95; PMID:11680853; http://dx.doi.org/10.1017.S1355838201014078
  • Grudzien-Nogalska E, Jemielity J, Kowalska J, Darzynkiewicz E, Rhoads RE. Phosphorothioate cap analogs stabilize mRNA and increase translational efficiency in mammalian cells. RNA 2007; 13:1745-55; PMID:17720878; http://dx.doi.org/10.1261/rna.701307
  • Fath S, Bauer AP, Liss M, Spriestersbach A, Maertens B, Hahn P, Ludwig C, Schäfer F, Graf M, Wagner R. Multiparameter RNA and codon optimization: a standardized tool to assess and enhance autologous mammalian gene expression. PLoS one 2011; 6:e17596; PMID:21408612; http://dx.doi.org/10.1371/journal.pone.0017596
  • Al-Saif M, Khabar KS. UU/UA dinucleotide frequency reduction in coding regions results in increased mRNA stability and protein expression. Mol Ther 2012; 20:954-9; PMID:22434136; http://dx.doi.org/10.1038/mt.2012.29
  • Weissman D, Kariko K. mRNA: Fulfilling the Promise of Gene Therapy. Mol Ther 2015; 23:1416-7; PMID:26321183; http://dx.doi.org/10.1038/mt.2015.138
  • Zubiaga AM, Belasco JG, Greenberg ME. The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol Cell Biol 1995; 15:2219-30; PMID:7891716; http://dx.doi.org/10.1128/MCB.15.4.2219
  • Peixeiro I, Silva AL, Romao L. Control of human β-globin mRNA stability and its impact on β-thalassemia phenotype. Haematologica 2011; 96:905-13; PMID:21357703; http://dx.doi.org/10.3324/haematol.2010.039206
  • Waggoner SA, Liebhaber SA. Regulation of α-globin mRNA stability. Exp Biol Med (Maywood) 2003; 228:387-95; PMID:12671183
  • Withers JB, Beemon KL. The structure and function of the rous sarcoma virus RNA stability element. J Cell Biochem 2011; 112:3085-92; PMID:21769913; http://dx.doi.org/10.1002/jcb.23272
  • Gallie DR. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev 1991; 5:2108-16; PMID:1682219; http://dx.doi.org/10.1101/gad.5.11.2108
  • Peng J, Murray EL, Schoenberg DR. In vivo and in vitro analysis of poly(A) length effects on mRNA translation. Methods Mol Biol 2008; 419:215-30; PMID:18369986; http://dx.doi.org/10.1007/978-1-59745-033-1_15
  • Balmayor ER, Geiger JP, Aneja MK, Berezhanskyy T, Utzinger M, Mykhaylyk O, Rudolph C, Plank C. Chemically modified RNA induces osteogenesis of stem cells and human tissue explants as well as accelerates bone healing in rats. Biomaterials 2016; 87:131-46; PMID:26923361; http://dx.doi.org/10.1016/j.biomaterials.2016.02.018
  • Elangovan S, Khorsand B, Do AV, Hong L, Dewerth A, Kormann M, Ross RD, Sumner DR, Allamargot C, Salem AK. Chemically modified RNA activated matrices enhance bone regeneration. J Control Release 2015; 218:22-8; PMID:26415855; http://dx.doi.org/10.1016/j.jconrel.2015.09.050
  • Plews JR, Li J, Jones M, Moore HD, Mason C, Andrews PW, Na J. Activation of pluripotency genes in human fibroblast cells by a novel mRNA based approach. PloS one 2010; 5:e14397; PMID:21209933; http://dx.doi.org/10.1371/journal.pone.0014397
  • Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010; 7:618-30; PMID:20888316; http://dx.doi.org/10.1016/j.stem.2010.08.012
  • Mandal PK, Rossi DJ. Reprogramming human fibroblasts to pluripotency using modified mRNA. Nat Protoc 2013; 8:568-82; PMID:23429718; http://dx.doi.org/10.1038/nprot.2013.019
  • Preskey D, Allison TF, Jones M, Mamchaoui K, Unger C. Synthetically modified mRNA for efficient and fast human iPS cell generation and direct transdifferentiation to myoblasts. Biochem Biophys Res Commun 2015; PMID:26449459; http://dx.doi.org/10.1016/j.bbrc.2015.09.102
  • Simeonov KP, Uppal H. Direct reprogramming of human fibroblasts to hepatocyte-like cells by synthetic modified mRNAs. PloS One 2014; 9:e100134; PMID:24963715; http://dx.doi.org/10.1371/journal.pone.0100134
  • Kariko K, Muramatsu H, Keller JM, Weissman D. Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol Ther 2012; 20:948-53; PMID:22334017; http://dx.doi.org/10.1038/mt.2012.7
  • Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 2014; 32:551-3; PMID:24681508; http://dx.doi.org/10.1038/nbt.2884
  • Wang X, Yu H, Lei A, Zhou J, Zeng W, Zhu H, Niu Y, Shi B, Cai B, Liu J, et al. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci Rep 2015; 5:13878; PMID:26354037; http://dx.doi.org/10.1038/srep13878
  • Kaneko T, Mashimo T. Simple Genome Editing of Rodent Intact Embryos by Electroporation. PloS one 2015; 10:e0142755; PMID:26556280; http://dx.doi.org/10.1371/journal.pone.0142755
  • Wang T, Hong Y. Direct gene disruption by TALENs in medaka embryos. Gene 2014; 543:28-33; PMID:24713411; http://dx.doi.org/10.1016/j.gene.2014.04.013
  • Yang D, Zhang J, Xu J, Zhu T, Fan Y, Fan J, Chen YE. Production of apolipoprotein C-III knockout rabbits using zinc finger nucleases. J Vis Exp 2013; 81; e50957; PMID:24301055; http://dx.doi.org/10.3791/50957
  • Flisikowska T, Thorey IS, Offner S, Ros F, Lifke V, Zeitler B, Rottmann O, Vincent A, Zhang L, Jenkins S, et al. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PloS One 2011; 6:e21045; PMID:21695153; http://dx.doi.org/10.1371/journal.pone.0021045
  • Williams DA, Thrasher AJ. Concise review: lessons learned from clinical trials of gene therapy in monogenic immunodeficiency diseases. Stem Cells Transl Med 2014; 3:636-42; PMID:24682287; http://dx.doi.org/10.5966/sctm.2013-0206
  • Schirmbeck R, Reimann J, Kochanek S, Kreppel F. The immunogenicity of adenovirus vectors limits the multispecificity of CD8 T-cell responses to vector-encoded transgenic antigens. Mol Ther 2008; 16:1609-16; PMID:18612271; http://dx.doi.org/10.1038/mt.2008.141
  • Mahiny AJ, Dewerth A, Mays LE, Alkhaled M, Mothes B, Malaeksefat E, Loretz B, Rottenberger J, Brosch DM, Reautschnig P, et al. In vivo genome editing using nuclease-encoding mRNA corrects SP-B deficiency. Nat Biotechnol 2015; 33:584-6; PMID:25985262; http://dx.doi.or/10.1038/nbt.3241
  • Allers K, Hutter G, Hofmann J, Loddenkemper C, Rieger K, Thiel E, Schneider T. Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation. Blood 2011; 117:2791-9; PMID:21148083; http://dx.doi.org/10.1182/blood-2010-09-309591
  • Evaluation the Safety and Tolerability of i.v. Administration of a Cancer Vaccine in Patients With Advanced Melanoma (Lipo-MERIT). (2015). Clinical Trial Phase I
  • Wissink EM, Fogarty EA, Grimson A. High-throughput discovery of post-transcriptional cis-regulatory elements. BMC Genomics 2016; 17:177; PMID:26941072; http://dx.doi.org/10.1186/s12864-016-2479-7
  • Desmet CJ, Ishii KJ. Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nat Rev Immunol 2012; 12:479-91; PMID:22728526; http://dx.doi.org/10.1038/nri3247
  • Brubaker SW, Bonham KS, Zanoni I, Kagan JC. Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol 2015; 33:257-90; PMID:25581309; http://dx.doi.org/10.1146/annurev-immunol-032414-112240
  • Clark GJ, Angel N, Kato M, Lopez JA, MacDonald K, Vuckovic S, Hart DN. The role of dendritic cells in the innate immune system. Microbes Infect 2000; 2:257-72; PMID:10758402; http://dx.doi.org/10.1016/S1286-4579(00)00302-6
  • Jacobson JM, Routy JP, Welles S, DeBenedette M, Tcherepanova I, Angel JB, Asmuth DM, Stein DK, Baril JG, McKellar M, et al. Dendritic Cell Immunotherapy for HIV-1 Infection Using Autologous HIV-1 RNA: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. J Acquir Immune Defic Syndr 2016; 72:31-8; PMID:26751016; http://dx.doi.org/10.1097/QAI.0000000000000926
  • Weiss R, Scheiblhofer S, Thalhamer J. Allergens are not pathogens: why immunization against allergy differs from vaccination against infectious diseases. Hum Vaccin Immunother 2014; 10:703-7; PMID:24280693; http://dx.doi.org/10.4161/hv.27183
  • Weiss R, Scheiblhofer S, Roesler E, Ferreira F, Thalhamer J. Prophylactic mRNA vaccination against allergy. Curr Opin Allergy Clin Immunol 2010; 10:567-74; PMID:20856111; http://dx.doi.org/10.1097/ACI.0b013e32833fd5b6
  • Fotin-Mleczek M, Duchardt KM, Lorenz C, Pfeiffer R, Ojkic-Zrna S, Probst J, Kallen KJ. Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J Immunother 2011; 34:1-15; PMID:21150709; http://dx.doi.org/10.1097/CJI.0b013e3181f7dbe8
  • Fotin-Mleczek M, Zanzinger K, Heidenreich R, Lorenz C, Kowalczyk A, Kallen KJ, et al. mRNA-based vaccines synergize with radiation therapy to eradicate established tumors. Radiat Oncol 2014; 9:180; PMID:25127546; http://dx.doi.org/10.1186/1748-717X-9-180
  • Schmidt MA, Goodwin TJ. Personalized medicine in human space flight: using Omics based analyses to develop individualized countermeasures that enhance astronaut safety and performance. Metabolomics 2013; 9:1134-56; PMID:24273472; http://dx.doi.org/10.1007/s11306-013-0556-3
  • Petsch B, Schnee M, Vogel AB, Lange E, Hoffmann B, Voss D, Schlake T, Thess A, Kallen KJ, Stitz L, et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol 2012; 30:1210-6; PMID:23159882; http://dx.doi.org/10.1038/nbt.2436
  • Pascolo S. Vaccination with messenger RNA. Methods Mol Med 2006; 127:23-40; PMID:16988444; htpp://dx.doi.org/10.1385/1-59745-168-1:23
  • Mortimer I, Tam P, MacLachlan I, Graham RW, Saravolac EG, Joshi PB. Cationic lipid-mediated transfection of cells in culture requires mitotic activity. Gene Ther 1999; 6:403-11; PMID:10435090; http://dx.doi.org/10.1038/sj.gt.3300837
  • Wong SS, Webby RJ. An mRNA vaccine for influenza. Nat Biotechnol 2012; 30:1202-4; PMID:23222788; http://dx.doi.org/10.1038/nbt.2439
  • Ichino M, Mor G, Conover J, Weiss WR, Takeno M, Ishii KJ, Klinman DM. Factors associated with the development of neonatal tolerance after the administration of a plasmid DNA vaccine. J Immunol 1999; 162:3814-8; PMID:10201898
  • Ponsaerts P, Van Tendeloo VF, Berneman ZN. Cancer immunotherapy using RNA-loaded dendritic cells. Clin Exp Immunol 2003; 134:378-84; PMID:14632740; http://dx.doi.org/10.1046/j.1365-2249.2003.02286.x
  • Vik-Mo EO, Nyakas M, Mikkelsen BV, Moe MC, Due-Tonnesen P, Suso EM, Sæbøe-Larssen S, Sandberg C, Brinchmann JE, Helseth E, et al. Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol Immunother 2013; 62:1499-509; PMID:23817721; http://dx.doi.org/10.1007/s00262-013-1453-3
  • Van Gulck E, Vlieghe E, Vekemans M, Van Tendeloo VF, Van De Velde A, Smits E, Anguille S, Cools N, Goossens H, Mertens L, et al. mRNA-based dendritic cell vaccination induces potent antiviral T-cell responses in HIV-1-infected patients. AIDS 2012; 26:F1-12; PMID:22156965; http://dx.doi.org/10.1097/QAD.0b013e32834f33e8
  • Aarntzen EH, Schreibelt G, Bol K, Lesterhuis WJ, Croockewit AJ, de Wilt JH, van Rossum MM, Blokx WA, Jacobs JF, Duiveman-de Boer T, et al. Vaccination with mRNA-electroporated dendritic cells induces robust tumor antigen-specific CD4+ and CD8+ T cells responses in stage III and IV melanoma patients. Clin Cancer Res 2012; 18:5460-70; PMID:22896657; http://dx.doi.org/10.1158/1078-0432.CCR-11-3368
  • Suso EM, Dueland S, Rasmussen AM, Vetrhus T, Aamdal S, Kvalheim G, Gaudernack G. hTERT mRNA dendritic cell vaccination: complete response in a pancreatic cancer patient associated with response against several hTERT epitopes. Cancer Immunol Immunother 2011; 60:809-18; PMID:21365467; http://dx.doi.org/10.1007/s00262-011-0991-9
  • Van Tendeloo VF, Van de Velde A, Van Driessche A, Cools N, Anguille S, Ladell K, Gostick E, Vermeulen K, Pieters K, Nijs G, et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms' tumor 1 antigen-targeted dendritic cell vaccination. Proc Natl Acad Sci U S A 2010; 107:13824-9; PMID:20631300; http://dx.doi.org/10.1073/pnas.1008051107
  • Routy JP, Boulassel MR, Yassine-Diab B, Nicolette C, Healey D, Jain R, Landry C, Yegorov O, Tcherepanova I, Monesmith T, et al. Immunologic activity and safety of autologous HIV RNA-electroporated dendritic cells in HIV-1 infected patients receiving antiretroviral therapy. Clin Immunol 2010; 134:140-7; PMID:19889582; http://dx.doi.org/10.1016/j.clim.2009.09.009
  • Coosemans A, Wolfl M, Berneman ZN, Van Tendeloo V, Vergote I, Amant F, Van Gool SW. Immunological response after therapeutic vaccination with WT1 mRNA-loaded dendritic cells in end-stage endometrial carcinoma. Anticancer Res 2010; 30:3709-14; PMID:20944158
  • Phase 3 Trial of Autologous Dendritic Cell Immunotherapy (AGS-003) Plus Standard Treatment of Advanced Renal Cell Carcinoma (RCC) (ADAPT). (2012). Clinical Trial Phase III
  • Wilgenhof S, Corthals J, Heirman C, van Baren N, Lucas S, Kvistborg P, Thielemans K, Neyns B. Phase II Study of Autologous Monocyte-Derived mRNA Electroporated Dendritic Cells (TriMixDC-MEL) Plus Ipilimumab in Patients With Pretreated Advanced Melanoma. J Clin Oncol 2016; 34:1330-8; PMID:26926680; http://dx.doi.org/10.1200/JCO.2015.63.4121
  • Bol KF, Figdor CG, Aarntzen EH, Welzen ME, van Rossum MM, Blokx WA, van de Rakt MW, Scharenborg NM, de Boer AJ, Pots JM, et al. Intranodal vaccination with mRNA-optimized dendritic cells in metastatic melanoma patients. Oncoimmunology 2015; 4:e1019197; PMID:26405571; http://dx.doi.org/10.1080/2162402X.2015.1019197
  • MiHA-loaded PD-L-silenced DC Vaccination After Allogeneic SCT (PSCT19). (2016). Clinical Trial Phase II
  • Adjuvant Dendritic Cell-immunotherapy Plus Temozolomide in Glioblastoma Patients (ADDIT-GLIO). (2016). Clinical Trial Phase II
  • Autologous Dendritic Cell Vaccination in Mesothelioma (MESODEC). (2016). Clinical Trial Phase II
  • Vaccine Therapy for the Treatment of Newly Diagnosed Glioblastoma Multiforme (ATTAC-II). (2016). Clinical Trial Phase II
  • Weide B, Pascolo S, Scheel B, Derhovanessian E, Pflugfelder A, Eigentler TK, Pawelec G, Hoerr I, Rammensee HG, Garbe C. Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J Immunother 2009; 32:498-507; PMID:19609242; http://dx.doi.org/10.1097/CJI.0b013e3181a00068
  • RNActive® Rabies Vaccine (CV7201) in Healthy Adults. (2014). Clinical Trial Phase I
  • Hekele A, Bertholet S, Archer J, Gibson DG, Palladino G, Brito LA, Otten GR, Brazzoli M, Buccato S, Bonci A, et al. Rapidly produced SAM((R)) vaccine against H7N9 influenza is immunogenic in mice. Emerg Microbes Infect 2013; 2:e52; PMID:26038486; http://dx.doi.org/10.1038/emi.2013.54
  • Trial of RNActive®-Derived Cancer Vaccine and Local Radiation in in Stage IV Non Small Cell Lung Cancer (NSCLC). (2013). Clinical Trial Phase I
  • Safety and Efficacy Trial of a RNActive®-Derived Prostate Cancer Vaccine in Hormone Refractory Disease. (2009). Clinical Trial Phase II
  • Trial of RNActive®-Derived Prostate Cancer Vaccine in Metastatic Castrate-refractory Prostate Cancer. (2013). Clinical Trial Phase II
  • An Open Label Randomised Trial of RNActive® Cancer Vaccine in High Risk and Intermediate Risk Patients With Prostate Cancer. (2014). Clinical Trial Phase II
  • IVAC MUTANOME Phase I Clinical Trial. (2014). Clinical Trial Phase I
  • Heidenreich R, Jasny E, Kowalczyk A, Lutz J, Probst J, Baumhof P, Scheel B, Voss S, Kallen KJ, Fotin-Mleczek M. A novel RNA-based adjuvant combines strong immunostimulatory capacities with a favorable safety profile. Int J Cancer 2015; 137:372-84; PMID:25530186; http://dx.doi.org/10.1002/ijc.29402
  • CureVac Press Release. (http://www.curevac.com/fileadmin/curevac.de/media/Content/Newsroom/20151221_CureVac_Press_release_JP_Morgan.pdf). 2015
  • Islam MA, Reesor EK, Xu Y, Zope HR, Zetter BR, Shi J. Biomaterials for mRNA delivery. Biomater Sci 2015; 3:1519-33; PMID:26280625; http://dx.doi.org/10.1039/C5BM00198F
  • Geall AJ, Verma A, Otten GR, Shaw CA, Hekele A, Banerjee K, Cu Y, Beard CW, Brito LA, Krucker T, et al. Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci U S A 2012; 109:14604-9; PMID:22908294; http://dx.doi.org/10.1073/pnas.1209367109
  • Rodriguez-Gascon A, del Pozo-Rodriguez A, Solinis MA. Development of nucleic acid vaccines: use of self-amplifying RNA in lipid nanoparticles. Int J Nanomedicine 2014; 9:1833-43; PMID:24748793; http://dx.doi.org/10.2147/IJN.S39810
  • Xu J, Luft JC, Yi X, Tian S, Owens G, Wang J, Johnson A, Berglund P, Smith J, Napier ME, et al. RNA replicon delivery via lipid-complexed PRINT protein particles. Mol Pharm 2013; 10:3366-74; PMID:23924216; http://dx.doi.org/10.1021/mp400190z
  • Pascolo S. The messenger's great message for vaccination. Expert Rev Vaccines 2015; 14:153-6; PMID:25586101; http://dx.doi.org/10.1586/14760584.2015.1000871
  • Hattinger E, Scheiblhofer S, Roesler E, Thalhamer T, Thalhamer J, Weiss R. Prophylactic mRNA Vaccination against Allergy Confers Long-Term Memory Responses and Persistent Protection in Mice. J Immunol Res 2015; 2015:797421; PMID:26557723; http://dx.doi.org/10.1155/2015/797421
  • Nelson HS, Oppenheimer J, Vatsia GA, Buchmeier A. A double-blind, placebo-controlled evaluation of sublingual immunotherapy with standardized cat extract. J Allergy Clin Immunol 1993; 92:229-36; PMID:8349933; http://dx.doi.org/10.1016/0091-6749(93)90166-D
  • Roesler E, Weiss R, Weinberger EE, Fruehwirth A, Stoecklinger A, Mostbock S, Ferreira F, Thalhamer J, Scheiblhofer S. Immunize and disappear-safety-optimized mRNA vaccination with a panel of 29 allergens. J Allergy Clin Immunol 2009; 124:1070-7 e1-11; PMID:19665781; http://dx.doi.org/10.1016/j.jaci.2009.06.036
  • Ball T, Sperr WR, Valent P, Lidholm J, Spitzauer S, Ebner C, Kraft D, Valenta R. Induction of antibody responses to new B cell epitopes indicates vaccination character of allergen immunotherapy. Eur J Immunol 1999; 29:2026-36; PMID:10382766; http://dx.doi.org/10.1002/(SICI)1521-4141(199906)29:06%3c2026::AID-IMMU2026%3e3.0.CO;2-2
  • Van Ree R, Van Leeuwen WA, Dieges PH, Van Wijk RG, De Jong N, Brewczyski PZ, Kroon AM, Schilte PP, Tan KY, Simon-Licht IF, et al. Measurement of IgE antibodies against purified grass pollen allergens (Lol p 1, 2, 3 and 5) during immunotherapy. Clin Exp Allergy 1997; 27:68-74; PMID:9117883; http://dx.doi.org/10.1046/j.1365-2222.1997.d01-416.x
  • Stafforst T, Schneider MF. An RNA-deaminase conjugate selectively repairs point mutations. Angewandte Chemie 2012; 51:11166-9; PMID:23038402; http://dx.doi.org/10.1002/anie.201206489
  • Schneider MF, Wettengel J, Hoffmann PC, Stafforst T. Optimal guideRNAs for re-directing deaminase activity of hADAR1 and hADAR2 in trans. Nucleic Acids Res 2014; 42:e87; PMID:24744243; http://dx.doi.org/10.1093/nar/gku272
  • Montiel-Gonzalez MF, Vallecillo-Viejo I, Yudowski GA, Rosenthal JJ. Correction of mutations within the cystic fibrosis transmembrane conductance regulator by site-directed RNA editing. Proc Natl Acad Sci U S A 2013; 110:18285-90; PMID:24108353; http://dx.doi.org/10.1073/pnas.1306243110
  • Bass BL. RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 2002; 71:817-46; PMID:12045112; http://dx.doi.org/10.1146/annurev.biochem.71.110601.135501
  • Nishikura K. Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 2010; 79:321-49; PMID:20192758; http://dx.doi.org/10.1146/annurev-biochem-060208-105251
  • Vogel P, Stafforst T. Site-directed RNA editing with antagomir deaminases–a tool to study protein and RNA function. ChemMedChem 2014; 9:2021-5; PMID:24954543; http://dx.doi.org/10.1002/cmdc.201402139
  • Vogel P, Schneider MF, Wettengel J, Stafforst T. Improving site-directed RNA editing in vitro and in cell culture by chemical modification of the guideRNA. Angewandte Chemie 2014; 53:6267-71; PMID:24890431; http://dx.doi.org/10.1002/anie.201402634
  • Hanswillemenke A, Kuzdere T, Vogel P, Jékely G, Stafforst T. Site-Directed RNA Editing in Vivo Can Be Triggered by the Light-Driven Assembly of an Artificial Riboprotein. J Am Chem Soc 2015; 137:15875-81; PMID:26594902; http://dx.doi.org/10.1021/jacs.5b10216
  • Zhao X, Yu Y-T. Targeted pre-mRNA modification for gene silencing and regulation. Nat Methods 2008; 5:95-100; PMID:18066073; http://dx.doi.org/10.1038/nmeth1142
  • Kole R, Krainer AR, Altman S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 2012; 11:125-40; PMID:22262036; http://dx.doi.org/10.1038/nrd3625
  • Blanc V, Davidson NO. C-to-U RNA editing: mechanisms leading to genetic diversity. J Biol Chem 2003; 278:1395-8; PMID:12446660; http://dx.doi.org/10.1074/jbc.R200024200
  • Liu N, Pan T. N6-methyladenosine-encoded epitranscriptomics. Nat Struct Mol Biol 2016; 23:98-102; PMID:26840897; http://dx.doi.org/10.1038/nsmb.3162
  • Machnicka MA, Milanowska K, Oglou OO, Purta E, Kurkowska M, Olchowik A, Januszewski W, Kalinowski S, Dunin-Horkawicz S, Rother KM, et al. MODOMICS: a database of RNA modification pathways—2013 update. Nucleic Acids Res 2013; 41:D262-D7; PMID:23118484; http://dx.doi.org/10.1093/nar/gks1007
  • Muttach F, Rentmeister A. A Biocatalytic Cascade for Versatile One‐Pot Modification of mRNA Starting from Methionine Analogues. Angewandte Chemie International Edition 2016; 55:1917-20; http://dx.doi.org/10.1002/anie.201507577
  • Vickers TA, Wyatt JR, Burckin T, Bennett CF, Freier SM. Fully modified 2′ MOE oligonucleotides redirect polyadenylation. Nucleic Acids Res 2001; 29:1293-9; PMID:11238995; http://dx.doi.org/10.1093/nar/29.6.1293
  • Xiong Y, Steitz TA. Mechanism of transfer RNA maturation by CCA-adding enzyme without using an oligonucleotide template. Nature 2004; 430:640-5; PMID:15295590; http://dx.doi.org/10.1038/nature02711
  • Cho HD, Verlinde CL, Weiner AM. Reengineering CCA-adding enzymes to function as (U, G)-or dCdCdA-adding enzymes or poly (C, A) and poly (U, G) polymerases. Proc Natl Acad Sci U S A 2007; 104:54-9; PMID:17179213; http://dx.doi.org/10.1073/pnas.0606961104
  • Trippe R, Guschina E, Hossbach M, Urlaub H, Lührmann R, Benecke B-J. Identification, cloning, and functional analysis of the human U6 snRNA-specific terminal uridylyl transferase. RNA 2006; 12:1494-504; PMID:16790842; http://dx.doi.org/10.1261/rna.87706
  • Martin G, Keller W. RNA-specific ribonucleotidyl transferases. RNA 2007; 13:1834-49; PMID:17872511; http://dx.doi.org/10.1261/rna.652807
  • Zamecnik PC, Raychowdhury MK, Tabatadze DR, Cantiello HF. Reversal of cystic fibrosis phenotype in a cultured Δ508 cystic fibrosis transmembrane conductance regulator cell line by oligonucleotide insertion. Proc Natl Acad Sci U S A 2004; 101:8150-5; PMID:15148387; http://dx.doi.org/10.1073/pnas.0401933101
  • Exploratory Study to Evaluate QR-010 in Subjects With Cystic Fibrosis ΔF508 CFTR Mutation. (2015). Clinical Trial Phase I
  • Dose Escalation Study of QR-010 in Homozygous ΔF508 Cystic Fibrosis Patients. (2015). Clinical Trial Phase IB
  • Open Label, Extension Study of PRO044 in Duchenne Muscular Dystrophy (DMD). (2014). Clinical Trial Phase II
  • Phase IIb Study of PRO045 in Subjects With Duchenne Muscular Dystrophy. (2013). Clinical Trial Phase 2B
  • A Phase I/II Study of PRO053 in Subjects With Duchenne Muscular Dystrophy (DMD). (2013). Clinical Phase Trial I/II
  • Study of SRP-4045 and SRP-4053 in DMD Patients (ESSENCE). (2015). Clinical Trial Phase III
  • A Study to Assess the Safety and Tolerability of Single Doses of AZD4076 in Healthy Male Subjects. (2015). Clinical Trial Phase I
  • RNA-Immunotherapy of IVAC_W_bre1_uID and IVAC_M_uID (TNBC-MERIT). (2014). Clinical Trial Phase I
  • A Phase I Study of T-Cells Genetically Modified at the CCR5 Gene by Zinc Finger Nucleases SB-728mR in HIV-Infected Patients. (2015). Clinical Trial Phase I